cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365879 Expansion of (1/x) * Series_Reversion( x*(1+x)^3*(1-x)^5 ).

Original entry on oeis.org

1, 2, 10, 54, 332, 2162, 14734, 103630, 746857, 5486206, 40926152, 309202686, 2361065920, 18192978966, 141280871840, 1104603758526, 8687878404289, 68692224882620, 545681467048132, 4353096328518810, 34858239962177764, 280095777427596008
Offset: 0

Views

Author

Seiichi Manyama, Sep 21 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(3*n+k+2, k)*binomial(6*n-k+4, n-k))/(n+1);
    
  • SageMath
    def A365879(n):
        h = binomial(6*n + 4, n) * hypergeometric([-n, 3*(n + 1)], [-6 * n - 4], -1) / (n + 1)
        return simplify(h)
    print([A365879(n) for n in range(22)])  # Peter Luschny, Sep 21 2023

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(3*n+k+2,k) * binomial(6*n-k+4,n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+k+2,k) * binomial(3*n-2*k+1,n-2*k). - Seiichi Manyama, Jan 18 2024
a(n) = (1/(n+1)) * [x^n] 1/( (1+x)^3 * (1-x)^5 )^(n+1). - Seiichi Manyama, Feb 16 2024

A365854 Expansion of (1/x) * Series_Reversion( x*(1+x)^2*(1-x)^3 ).

Original entry on oeis.org

1, 1, 4, 13, 55, 232, 1052, 4869, 23206, 112519, 554560, 2767336, 13959941, 71060356, 364569352, 1883143669, 9785481498, 51118097686, 268294595396, 1414106565611, 7481787454031, 39721596068000, 211549545257760, 1129912319370600, 6050931114958080
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(2*n+k+1, k)*binomial(4*n-k+2, n-k))/(n+1);
    
  • SageMath
    def A365854(n):
        h = binomial(2*(2*n + 1), n) * hypergeometric([-n, 2*(n + 1)], [-2*(2*n + 1)], -1) / (n + 1)
        return simplify(h)
    print([A365854(n) for n in range(25)])  # Peter Luschny, Sep 20 2023

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(2*n+k+1,k) * binomial(4*n-k+2,n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(2*n-2*k,n-2*k). - Seiichi Manyama, Jan 18 2024
a(n) = (1/(n+1)) * [x^n] 1/( (1+x)^2 * (1-x)^3 )^(n+1). - Seiichi Manyama, Feb 16 2024
Showing 1-2 of 2 results.