A365903 Number of partitions of [n] whose block minima sum to k, where k is chosen so as to maximize this number.
1, 1, 1, 2, 4, 10, 29, 101, 367, 1562, 6891, 37871, 197930, 1121634, 6888085, 46190282, 323250987, 2349020516, 17897285514, 142512956148, 1178963284732, 10248806222398, 91421283039658, 847666112839362, 8100455404172267, 79925567946537362, 814508927747776069
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i, t, m) option remember; `if`(n=0, t^(m-i+1), `if`((i+m)*(m+1-i)/2
n, 0, `if`(t=0, 0, t*b(n, i+1, t, m))+ b(n-i, i+1, t+1, m))) end: a:= n-> max(seq(b(k, 1, 0, n), k=0..n*(n+1)/2)): seq(a(n), n=0..26); # second Maple program: a:= proc(h) option remember; local b; b:= proc(n, m) option remember; `if`(n=0, 1, b(n-1, m)*m + expand(x^(h-n+1)*b(n-1, m+1))) end: forget(b); max(coeffs(b(h, 0))) end: seq(a(n), n=0..26); -
Mathematica
Q[1, t_, s_] := t*s; Q[n_, t_, s_] := Q[n, t, s] = s*D[Q[n-1, t, s], s] + s*t^n*Q[n-1, t, s] // Expand; P[n_, t_] := Module[{s}, Q[n, t, s] /. s -> 1]; a[n_] := If[n == 0, 1, Module[{t}, CoefficientList[P[n, t], t] // Max]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Oct 03 2024 *)