A365918 Number of distinct non-subset-sums of integer partitions of n.
0, 1, 2, 6, 8, 19, 24, 46, 60, 101, 124, 206, 250, 378, 462, 684, 812, 1165, 1380, 1927, 2268, 3108, 3606, 4862, 5648, 7474, 8576, 11307, 12886, 16652, 19050, 24420, 27584, 35225, 39604, 49920, 56370, 70540, 78608, 98419, 109666, 135212, 151176, 185875, 205308
Offset: 1
Keywords
Examples
The a(6) = 19 ways, showing each partition and its non-subset-sums: (6): 1,2,3,4,5 (51): 2,3,4 (42): 1,3,5 (411): 3 (33): 1,2,4,5 (321): (3111): (222): 1,3,5 (2211): (21111): (111111):
Programs
-
Mathematica
Table[Total[Length[Complement[Range[n],Total/@Subsets[#]]]&/@IntegerPartitions[n]],{n,10}]
-
Python
# uses A304792_T from sympy import npartitions def A365918(n): return (n+1)*npartitions(n)-A304792_T(n,n,(0,),1) # Chai Wah Wu, Sep 25 2023
Extensions
a(21)-a(45) from Chai Wah Wu, Sep 25 2023
Comments