A365919 Heinz numbers of integer partitions with the same number of distinct positive subset-sums as distinct non-subset-sums.
1, 3, 9, 21, 22, 27, 63, 76, 81, 117, 147, 175, 186, 189, 243, 248, 273, 286, 290, 322, 345, 351, 399, 418, 441, 513, 516, 567, 688, 715, 729, 819, 1029, 1053, 1062, 1156, 1180, 1197, 1323, 1375, 1416, 1484, 1521, 1539, 1701, 1827, 1888, 1911, 2068, 2115, 2130
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 3: {2} 9: {2,2} 21: {2,4} 22: {1,5} 27: {2,2,2} 63: {2,2,4} 76: {1,1,8} 81: {2,2,2,2} 117: {2,2,6} 147: {2,4,4} 175: {3,3,4} 186: {1,2,11} 189: {2,2,2,4} 243: {2,2,2,2,2}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; smu[y_]:=Union[Total/@Rest[Subsets[y]]]; nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]]; Select[Range[100],Length[smu[prix[#]]]==Length[nmz[prix[#]]]&]
Comments