A365923 Triangle read by rows where T(n,k) is the number of integer partitions of n with exactly k distinct non-subset-sums.
1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 4, 0, 2, 0, 1, 0, 5, 1, 0, 3, 1, 1, 0, 8, 0, 3, 0, 3, 0, 1, 0, 10, 2, 1, 2, 2, 3, 1, 1, 0, 16, 0, 5, 0, 3, 0, 5, 0, 1, 0, 20, 2, 2, 4, 2, 6, 0, 4, 1, 1, 0, 31, 0, 6, 0, 8, 0, 5, 0, 5, 0, 1, 0, 39, 4, 4, 4, 1, 6, 6, 3, 2, 6, 1, 1, 0
Offset: 0
Examples
The partition (4,2) has subset-sums {2,4,6} and non-subset-sums {1,3,5} so is counted under T(6,3). Triangle begins: 1 1 0 1 1 0 2 0 1 0 2 1 1 1 0 4 0 2 0 1 0 5 1 0 3 1 1 0 8 0 3 0 3 0 1 0 10 2 1 2 2 3 1 1 0 16 0 5 0 3 0 5 0 1 0 20 2 2 4 2 6 0 4 1 1 0 31 0 6 0 8 0 5 0 5 0 1 0 39 4 4 4 1 6 6 3 2 6 1 1 0 55 0 13 0 8 0 12 0 6 0 6 0 1 0 71 5 8 7 3 5 3 16 3 6 0 6 1 1 0 Row n = 6 counts the following partitions: (321) (411) . (51) (33) (6) . (3111) (42) (2211) (222) (21111) (111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Length[Complement[Range[n], Total/@Subsets[#]]]==k&]], {n,0,10}, {k,0,n}]
Comments