cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365977 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+1) / (5*k+1) ).

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 840, 6720, 60480, 604800, 6652800, 83462400, 1138233600, 16746912000, 264176640000, 4444771968000, 80719172352000, 1556132497920000, 31722198842880000, 681437830993920000, 15378172899747840000, 366025806545817600000
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+1)/(5*k+1)))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} (5*k)! * binomial(n,5*k+1) * a(n-5*k-1).

A365975 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(3*k+1) / (3*k+1) ).

Original entry on oeis.org

1, 1, 2, 6, 30, 180, 1260, 10800, 104760, 1130760, 13776480, 184044960, 2670220080, 42222280320, 718144004160, 13061603808000, 254036916144000, 5247117638294400, 114652672773408000, 2647321293055507200, 64330669872690566400, 1640738743703289331200
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\3, x^(3*k+1)/(3*k+1)))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} (3*k)! * binomial(n,3*k+1) * a(n-3*k-1).
Showing 1-2 of 2 results.