A365988 Number of n X n binary arrays with a path of adjacent 1's from top row to bottom row.
1, 7, 197, 22193, 10056959, 18287614751, 133267613878665, 3888492110032890000, 454016084146596000000000, 212041997127527000000000000000, 396017759826921000000000000000000000
Offset: 1
Examples
x indicates a broken rung, - a functional rung. . |-| |-| |x| |-| |-| |x| |-| |-| |-| |-| (1) |-| |-| (2) |-| |-| (3) |-| |x| (4) . |-| |-| |x| |-| |-| |x| |-| |-| |x| |-| (5) |x| |-| (6) |-| |x| (7) |x| |x| (8) . |x| |x| |x| |-| |-| |x| |x| |x| |-| |-| (9) |-| |x| (10) |x| |-| (11) |-| |x| (12) . |x| |x| |x| |-| |-| |x| |x| |x| |x| |-| (13) |x| |x| (14) |x| |x| (15) |x| |x| (16) . The only climbable configurations are 1-7 since there is a path to the top from the bottom. So a(2) = 7.
References
- Samuel Dittmer, Hiram Golze, Grant Molnar, and Caleb Stanford, Puzzle and Proof: A Decade of Problems from the Utah Math Olympiad, CRC Press, 2025, p. 51.
Links
- Stephan Mertens, Percolation.
- Jeremy Rebenstock, Python notebook for calculating and visualizing a(n).
- Jeremy Rebenstock and Thomas Ladouceur, Illustration for a(2) = 7.
- R. M. Ziff and M. E. J. Newman, Convergence of threshold estimates for two-dimensional percolation, arXiv:cond-mat/0203496 [cond-mat.stat-mech], 2002.
Programs
-
Python
# See Rebenstock link.
Formula
Upper limit: a(n) <= 2^(n^2). This is the total number of boards possible.
Lower limit: a(n) >= 2^(n-1)*a(n-1) climbable paths (board before it, with a completely unbroken ladder) and we break any arrangement of rungs on the new ladder.
Comments