A366012 a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(n*(n+1),n-k).
1, 2, 13, 156, 2833, 70098, 2214280, 85464984, 3906724321, 206648387550, 12425282899588, 837384222603448, 62539219710804627, 5127758187193514824, 457986530357734020432, 44263628968974498793648, 4602969726808566383149761, 512486177498084438210961270, 60827938291895363867587959628
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[1/(n + 1) Sum[Binomial[n + k, n] Binomial[n (n + 1), n - k], {k, 0, n}], {n, 0, 18}] Table[SeriesCoefficient[(1/x) InverseSeries[Series[x (1 - x)/(1 + x)^n, {x, 0, n + 1}], x], {x, 0, n}], {n, 0, 18}]
Formula
a(n) = [x^n] (1/x) * Series_Reversion( x * (1 - x) / (1 + x)^n ).
a(n) ~ exp(n + 3/2) * n^(n - 3/2) / sqrt(2*Pi). - Vaclav Kotesovec, Sep 26 2023