A366015 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 3 * A(x)).
0, 1, 7, 76, 995, 14433, 223300, 3611016, 60305787, 1032115315, 18007816255, 319110233104, 5727667197044, 103913426353324, 1902498385538520, 35106179258551632, 652236828560562987, 12190651925663309175, 229059610932456616501, 4324334144117016053500, 81983637468108446363755
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number
- Eric Weisstein's World of Mathematics, Series Reversion
Programs
-
Mathematica
nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^4/(1 - 3 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] CoefficientList[InverseSeries[Series[x (1 - 3 x)/(1 + x)^4, {x, 0, 20}], x], x] Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 3^k, {k, 0, n - 1}], {n, 1, 20}]]
Formula
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(4*n,n-k-1) * 3^k for n > 0.
Comments