cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366016 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 4 * A(x)).

Original entry on oeis.org

0, 1, 8, 102, 1580, 27193, 499828, 9609372, 190869948, 3886281300, 80681111940, 1701418017390, 36345240847188, 784821812522062, 17103169093916120, 375670490644949624, 8308349385885678684, 184856293637482503660, 4134886240989315235840, 92928784113832360511800, 2097399158679611824619120
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2023

Keywords

Comments

Reversion of g.f. for heptagonal pyramidal numbers (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^4/(1 - 4 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 4 x)/(1 + x)^4, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 4^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(4*n,n-k-1) * 4^k for n > 0.
a(n) ~ sqrt(163 - 1521/sqrt(89)) * (4933 + 801*sqrt(89))^n / (sqrt(Pi) * n^(3/2) * 2^(9*n + 9/2)). - Vaclav Kotesovec, Sep 27 2023