A366016
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 4 * A(x)).
Original entry on oeis.org
0, 1, 8, 102, 1580, 27193, 499828, 9609372, 190869948, 3886281300, 80681111940, 1701418017390, 36345240847188, 784821812522062, 17103169093916120, 375670490644949624, 8308349385885678684, 184856293637482503660, 4134886240989315235840, 92928784113832360511800, 2097399158679611824619120
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^4/(1 - 4 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 4 x)/(1 + x)^4, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 4^k, {k, 0, n - 1}], {n, 1, 20}]]
A366014
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 2 * A(x)).
Original entry on oeis.org
0, 1, 6, 54, 580, 6873, 86688, 1141500, 15512220, 215928900, 3063184410, 44124882750, 643692232404, 9490176205006, 141184118174640, 2116751269990968, 31951313566227228, 485159929343783532, 7405637373574690968, 113572576254948487800, 1749075343256441443320
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^4/(1 - 2 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 2 x)/(1 + x)^4, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 2^k, {k, 0, n - 1}], {n, 1, 20}]]
A366015
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 3 * A(x)).
Original entry on oeis.org
0, 1, 7, 76, 995, 14433, 223300, 3611016, 60305787, 1032115315, 18007816255, 319110233104, 5727667197044, 103913426353324, 1902498385538520, 35106179258551632, 652236828560562987, 12190651925663309175, 229059610932456616501, 4324334144117016053500, 81983637468108446363755
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^4/(1 - 3 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 3 x)/(1 + x)^4, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 3^k, {k, 0, n - 1}], {n, 1, 20}]]
A366037
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 5 * A(x)).
Original entry on oeis.org
0, 1, 10, 160, 3110, 67155, 1548526, 37346040, 930513870, 23765376580, 618871054120, 16370119905880, 438628647940730, 11880264846822610, 324739360804852980, 8946782070689651280, 248184394985913218910, 6926162613387923126700, 194320992885495965332600, 5477763483026946993808960, 155070883903415687652796120
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^5/(1 - 5 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 5 x)/(1 + x)^5, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 5^k, {k, 0, n - 1}], {n, 1, 20}]]
A366204
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(4*n,n-k-1) * (n-3)^k.
Original entry on oeis.org
1, 3, 22, 305, 6873, 223300, 9609372, 517122117, 33450100420, 2528420918595, 218708219876094, 21304932729509468, 2307805461194581390, 275157252809857575960, 35806664475402303854328, 5049845899886455033320237, 767208489677203200554103660, 124917404793477227061928480153
Offset: 1
-
Unprotect[Power]; 0^0 = 1; Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] (n - 3)^k, {k, 0, n - 1}], {n, 1, 18}]
Table[Binomial[4 n, n - 1] Hypergeometric2F1[1 - n, n, 3 n + 2, 3 - n]/n, {n, 1, 18}]
Table[SeriesCoefficient[InverseSeries[Series[x (1 - (n - 3) x)/(1 + x)^4, {x, 0, n}], x], {x, 0, n}], {n, 1, 18}]
Showing 1-5 of 5 results.
Comments