A366065 Positions of records in A366091.
0, 3, 9, 12, 30, 36, 81, 84, 156, 228, 246, 324, 396, 444, 516, 534, 606, 774, 804, 876, 1164, 1614, 1884, 2046, 2244, 2676, 3564, 3684, 3756, 4134, 4404, 4764, 5124, 5646, 6636, 6654, 6924, 7716, 8166, 8724, 9804, 10686, 11334, 12324, 12846, 13476, 15654, 17004, 17796, 18804, 20406, 20694, 21036
Offset: 1
Keywords
Examples
a(6) = 36 is a term because 36 = 6^2 + 2*0^2 + 3*0^2 = 2^2 + 2*4^2 + 3*0^2 = 5^2 + 2*2^2 + 3*1^2 = 1^2 + 2*4^2 + 3*1^2 = 4^2 + 2*2^2 + 3*2^2 = 3^2 + 2*0^2 + 3*3^2 = 1^2 + 2*2^2 + 3*3^2 can be written as i^2 + 2*j^2 + 3*k^2 in 7 ways, and all numbers < 36 can be written in fewer than 7 ways.
Programs
-
Maple
g:= add(z^(i^2),i=0..500) * add(z^(2*i^2),i=0..floor(500/sqrt(2))) * add(z^(3*i^2),i=0..floor(500/sqrt(3))): S:= series(g,z,250001): L:= [seq(coeff(S,z,i),i=0..250000)]: A:= NULL: m:= 0: for i from 1 to 250001 do if L[i] > m then m:= L[i]; A:=A,i-1 fi od: A;
Comments