A366068 Numbers having exactly 10 distinct digits arranged in such a way that the sum of any pair of adjacent digits is a substring of the number.
1263907548, 1263908457, 1275480639, 1275480936, 1326708549, 1326709458, 1327608549, 1327609458, 1349067258, 1349076258, 1349085267, 1349085276, 1358067249, 1358076249, 1358094267, 1358094276, 1362708549, 1362709458, 1367085249, 1367094258, 1367208549, 1367209458, 1367245809, 1367249058, 1367249085, 1367254908, 1367258049, 1367258094, 1427086359, 1427095368, 1435907268
Offset: 1
Examples
The first term is 1263907548 and we see that the 9 successive sums of two adjacent digits are, from left to right, 1+2 (=3), 2+6 (=8), 6+3 (=9), 3+9 (=12), 9+0 (=9), 0+7 (=7), 7+5 (=12), 5+4 (=9) and 4+8 (=12); the results between brackets are substrings of the first term.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..2778
Crossrefs
Cf. A236402.
Programs
-
Python
from itertools import permutations def afull(): return [int(s) for s in ("".join(c) for c in permutations("0123456789") if c[0]!="0") if all(str(sum(map(int, s[i:i+2]))) in s for i in range(len(s)-1))] # Michael S. Branicky, Oct 15 2023
Comments