A366072 Decimal expansion of a constant related to the asymptotics of A307399.
5, 8, 4, 2, 7, 8, 3, 2, 1, 4, 7, 6, 3, 5, 2, 0, 3, 2, 8, 4, 7, 3, 5, 0, 4, 2, 9, 2, 5, 3, 6, 4, 3, 5, 0, 9, 0, 3, 3, 4, 1, 7, 8, 0, 0, 7, 7, 3, 2, 8, 4, 0, 6, 1, 8, 4, 5, 7, 7, 4, 2, 4, 3, 5, 5, 8, 8, 2, 0, 3, 1, 4, 0, 9, 8, 5, 9, 2, 7, 0, 5, 3, 7, 5, 2, 1, 4, 2, 8, 3, 5, 6, 2, 2, 5, 0, 6, 4, 3, 0, 0, 1, 4, 3, 4
Offset: 1
Examples
5.84278321476352032847350429253643509033417800773284061845774243558820314...
Programs
-
Mathematica
val = r /. FindRoot[{1 + (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/Log[r*s] == s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] / QPochhammer[r*s], (-4*r*s*ArcTanh[1 - 2*r*s] + s*(1 - r*s)*Log[r*s]^2 + 2*Log[1 - r*s]) / (-1 + r*s) - 2*QPolyGamma[0, 1, r*s] + ((1 - s)*Log[r*s] + Log[1 - r*s] + QPolyGamma[0, 1, r*s])^2 - QPolyGamma[1, 1, r*s] + 2*r*s*Log[r*s]*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s] == (-1 + 1/s + Log[1 - r*s]/(s*Log[r*s]) + QPolyGamma[0, 1, r*s]/(s*Log[r*s]) + r^2*s*Derivative[0, 2][QPochhammer][r*s, r*s] / QPochhammer[r*s])*s* Log[r*s]^2}, {r, 1/6}, {s, 2}, WorkingPrecision -> 90]; N[1/Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]
Formula
Equals limit n->infinity A307399(n)^(1/n).