A366078 The number of distinct prime factors of the cubefree part of n (A360539).
0, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 0, 2, 1, 3, 1, 0, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 1, 2, 2, 0, 2, 3, 1, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 0, 2, 1, 3, 2, 2, 2
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Rafael Jakimczuk and Matilde LalĂn, Sums of omega(n) and Omega(n) over the k-free parts and k-full parts of some particular sequences, Integers, Vol. 22 (2022), Article #A113.
Programs
-
Mathematica
f[p_, e_] := If[e < 3, 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecsum(apply(x -> if(x < 3, 1, 0), factor(n)[, 2]));
Formula
Additive with a(p^e) = 1 if e <= 2, and a(p^e) = 0 for e >= 3.
a(n) >= 0, with equality if and only if n is cubefull (A036966).
Comments