cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366091 a(n) is the number of ways to write n = i^2 + 2*j^2 + 3*k^2 with i,j,k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 0, 2, 4, 1, 2, 2, 2, 1, 3, 2, 2, 4, 2, 1, 2, 2, 0, 4, 3, 2, 5, 2, 1, 3, 2, 2, 7, 2, 2, 5, 0, 2, 0, 2, 4, 4, 3, 1, 4, 3, 3, 5, 3, 2, 7, 1, 2, 6, 0, 3, 6, 2, 2, 4, 2, 2, 6, 3, 2, 4, 3, 3, 3, 2, 0, 7, 5, 2, 6, 3, 2, 8, 2, 2, 11, 2, 5, 2, 2, 3, 0, 4, 3, 7, 3, 2, 2, 3, 3
Offset: 0

Views

Author

Robert Israel, Sep 28 2023

Keywords

Examples

			a(9) = 3 because 9 = 3^2 + 2*0^2 + 3*0^2 = 1^2 + 2*2^2 + 3*0^2 = 2^2 + 2*1^2 + 3*1^2.
		

Crossrefs

Cf. A028594 (allows any integer i,j,k), A055042 (a(n) = 0)

Programs

  • Maple
    g:= (1+JacobiTheta3(0,z))*(1+JacobiTheta3(0,z^2))*(1+JacobiTheta3(0,z^3))/8:
    S:= series(g,z,101):
    seq(coeff(S,z,j),j=0..100);
  • Python
    from itertools import count
    from sympy.ntheory.primetest import is_square
    def A366091(n):
        c = 0
        for k in count(0):
            if (a:=3*k**2)>n:
                break
            for j in count(0):
                if (b:=a+(j**2<<1))>n:
                    break
                if is_square(n-b):
                    c += 1
        return c # Chai Wah Wu, Sep 29 2023

Formula

G.f. (1 + theta_3(0,z)) * (1 + theta_3(0,z^2)) * (1 + theta_3(0,z^3))/8 where theta_3 is a Jacobi theta function.