A366064 Record values of A366091.
1, 2, 3, 4, 5, 7, 8, 11, 15, 16, 19, 21, 23, 24, 25, 28, 32, 33, 34, 39, 48, 50, 60, 64, 65, 74, 78, 79, 84, 90, 92, 96, 102, 104, 112, 113, 129, 133, 136, 137, 149, 153, 163, 165, 176, 178, 190, 192, 196, 200, 209, 226, 237, 244, 253, 273, 284, 299, 316, 317, 320, 329, 347, 360, 361, 380, 385
Offset: 1
Keywords
Examples
a(6) = 7 is a term because 36 = 6^2 + 2*0^2 + 3*0^2 = 2^2 + 2*4^2 + 3*0^2 = 5^2 + 2*2^2 + 3*1^2 = 1^2 + 2*4^2 + 3*1^2 = 4^2 + 2*2^2 + 3*2^2 = 3^2 + 2*0^2 + 3*3^2 = 1^2 + 2*2^2 + 3*3^2 can be written as i^2 + 2*j^2 + 3*k^2 in 7 ways, and all numbers < 36 can be written in fewer than 7 ways.
Programs
-
Maple
g:= add(z^(i^2),i=0..500) * add(z^(2*i^2),i=0..floor(500/sqrt(2))) * add(z^(3*i^2),i=0..floor(500/sqrt(3))): S:= series(g,z,250001): L:= [seq(coeff(S,z,i),i=0..250000)]: B:= NULL: m:= 0: for i from 1 to 250001 do if L[i] > m then m:= L[i]; B:=B,m fi od: B;
Comments