cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A366071 Expansion of (1/x) * Series_Reversion( x*(1+x-x^3)/(1+x) ).

Original entry on oeis.org

1, 0, 0, 1, -1, 1, 3, -8, 14, 1, -49, 144, -162, -139, 1159, -2532, 2036, 6062, -26282, 47440, -11474, -190071, 606163, -838984, -481092, 5479390, -13618658, 13030368, 28786262, -148598623, 294393355, -128639411, -1086088045, 3848604261, -5935686369, -1750697623
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^(n-k)*binomial(n+k, k)*binomial(n-2*k-1, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^(n-k) * binomial(n+k,k) * binomial(n-2*k-1,n-3*k).

A366096 Expansion of (1/x) * Series_Reversion( x*(1+x-x^3)/(1+x)^3 ).

Original entry on oeis.org

1, 2, 5, 15, 51, 187, 719, 2858, 11650, 48438, 204630, 875867, 3790172, 16554305, 72883035, 323109570, 1441152303, 6462494515, 29118219850, 131761291852, 598529262016, 2728346941040, 12476533435028, 57220220120080, 263125059775970, 1212942573227309
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(2*n-k+2, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(2*n-k+2,n-3*k).

A366097 Expansion of (1/x) * Series_Reversion( x*(1+x-x^3)/(1+x)^4 ).

Original entry on oeis.org

1, 3, 12, 56, 287, 1564, 8896, 52217, 313955, 1923775, 11970066, 75427608, 480365740, 3086989128, 19992893796, 130363352003, 855099212950, 5638480905533, 37354602517624, 248515024509486, 1659620048332369, 11121368629141886, 74759777174598964
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(3*n-k+3, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(3*n-k+3,n-3*k).

A366116 Expansion of (1/x) * Series_Reversion( x*(1+x+x^3)/(1+x)^2 ).

Original entry on oeis.org

1, 1, 1, 0, -3, -9, -15, -7, 50, 203, 429, 382, -1045, -5845, -14751, -18627, 20255, 184818, 549630, 879632, -156085, -6025489, -21267251, -40911195, -17629620, 193929269, 835617523, 1881543582, 1674869775, -5855762293, -32848801375, -85601962056, -108647926359
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(n+k, k)*binomial(n-k+1, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n+k,k) * binomial(n-k+1,n-3*k).
Showing 1-4 of 4 results.