A366109 a(n) = floor(n!*(3*floor(n/2)!*ceiling(n/2)! + 3*floor((n+2)/2)!*ceiling((n-2)/2)! - 6*floor(n/2)!*ceiling((n-2)/2)!)^(-1)).
1, 1, 2, 4, 7, 13, 26, 46, 92, 168, 333, 616, 1225, 2288, 4558, 8580, 17107, 32413, 64664, 123170, 245832, 470288, 938943, 1802770, 3600207, 6933733, 13849778, 26744400, 53429368, 103411680, 206621384, 400720260, 800747232, 1555737480, 3109074130, 6050090200, 12091800773
Offset: 3
Keywords
Links
- Gábor Czédli, Minimum-sized generating sets of the direct powers of the free distributive lattice on three generators and a Sperner theorem, arXiv:2309.13783 [math.CO], 2023. See formulas (3.6) at p. 4 and (4.15) at p. 8.
Programs
-
Mathematica
a[n_]:=Floor[n!(3Floor[n/2]!Ceiling[n/2]! + 3Floor[(n+2)/2]!Ceiling[(n-2)/2]! - 6Floor[n/2]!Ceiling[(n-2)/2]!)^(-1)]; Array[a,37,3]