cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366126 The largest unitary divisor of n that is a cube.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2023

Keywords

Comments

First differs from A056191 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, 3], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] % 3, 1, f[i,1]^f[i,2]));}

Formula

Multiplicative with a(p^e) = p^e if e is divisible by 3 and 1 otherwise.
a(n) = n if and only if n is a positive cube (A000578 \ {0}).
A001221(a(n)) = A366124(n).
A001222(a(n)) = A366125(n).
Sum_{k=1..n} a(k) ~ c * n^(4/3), where c = (1/4) * Product_{p prime} (1 + (p^(1/3) + p^(5/3))/(1 + p + p^2 + p^3)) = 0.61488587249270755696... .