A366127 Number of finite incomplete multisets of positive integers with greatest non-subset-sum n.
1, 2, 4, 6, 11, 15, 25, 35, 53, 72, 108
Offset: 1
Examples
The non-subset-sums of y = {2,2,3} are {1,6}, with maximum 6, so y is counted under a(6). The a(1) = 1 through a(6) = 15 multisets: {2} {3} {4} {5} {6} {7} {1,3} {1,4} {1,5} {1,6} {1,7} {2,2} {2,3} {2,4} {2,5} {1,1,4} {1,1,5} {3,3} {3,4} {1,2,5} {1,1,6} {1,1,7} {1,1,1,5} {1,2,6} {1,2,7} {1,3,3} {1,3,4} {2,2,2} {2,2,3} {1,1,1,6} {1,1,1,7} {1,1,2,6} {1,1,2,7} {1,1,1,1,6} {1,1,3,7} {1,2,2,7} {1,1,1,1,7} {1,1,1,2,7} {1,1,1,1,1,7}
Crossrefs
These multisets have ranks A365830.
Counts appearances of n in the rank statistic A365920.
Column sums of A365921.
The strict case is A366129.
A325799 counts non-subset-sums of prime indices.
A365543 counts partitions with a submultiset summing to k.
A365661 counts strict partitions w/ a subset summing to k.
A365918 counts non-subset-sums of partitions.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]]; Table[Length[Select[Join@@IntegerPartitions/@Range[n,2*n],Max@@nmz[#]==n&]],{n,5}]
Comments