A366141 Triangular array read by rows: T(n,k) is the number of Boolean relation matrices such that all of the blocks of its Frobenius normal form are 0-blocks or 1-blocks and that have exactly k 1-blocks on the diagonal, n>=0, 0<=k<=n.
1, 1, 1, 3, 7, 3, 25, 85, 84, 25, 543, 2335, 3579, 2322, 543, 29281, 152101, 310020, 309725, 151835, 29281, 3781503, 23139487, 58538763, 78349050, 58514700, 23128233, 3781503, 1138779265, 8051910805, 24318772884, 40667112045, 40664902810, 24315521720, 8050866418, 1138779265
Offset: 0
Examples
Triangle begins ... 1; 1, 1; 3, 7, 3; 25, 85, 84, 25; 543, 2335, 3579, 2322, 543; 29281, 152101, 310020, 309725, 151835, 29281; 3781503, 23139487, 58538763, 78349050, 58514700, 23128233, 3781503; ...
Links
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
Programs
-
Mathematica
nn = 6; B[n_] := 2^Binomial[n, 2] n!; dags=Select[Import["https://oeis.org/A003024/b003024.txt", "Table"], Length@# == 2 &][[All, 2]]; d[x_] := Total[dags Table[x^i/i!, {i, 0, 40}]]; Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[ Series[d[y (Exp[x] - 1) + x], {x, 0, nn}], {x, y}]] // Grid
Comments