A366143 a(n) = a(n-2) + 2*a(n-4) - a(n-10), with a[0..9] = [1, 1, 1, 1, 1, 2, 3, 5, 6, 9].
1, 1, 1, 1, 1, 2, 3, 5, 6, 9, 11, 18, 22, 35, 43, 69, 84, 134, 164, 263, 321, 513, 627, 1004, 1226, 1961, 2396, 3835, 4684, 7494, 9155, 14651, 17896, 28635, 34980, 55976, 68376, 109411, 133652, 213869, 261249, 418040, 510657, 817143, 998175, 1597247, 1951113
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,2,0,0,0,0,0,-1).
Crossrefs
Cf. A135318.
Programs
-
Mathematica
LinearRecurrence[{0, 1, 0, 2, 0, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 2, 3, 5, 6, 9}, 40]
Formula
a(n) = a(n-2) + 2*a(n-4) - a(n-10).
a(2*n) = a(2*n-1) + a(2*n-4) - a(2*n-5) + a(2*n-6).
a(2*n+1) = a(2*n) + 2*a(2*n-3) - a(2*n-4) + a(2*n-6) - a(2*n-7).
G.f.: (x^8+x^7-x^5-2*x^4+x+1)/(x^10-2*x^4-x^2+1).
Comments