A366144 a(n) = n/d(n) if d(n) | n, otherwise a(n) = n*d(n), where d(n) = A000005(n) is the number of divisors of n.
1, 1, 6, 12, 10, 24, 14, 2, 3, 40, 22, 2, 26, 56, 60, 80, 34, 3, 38, 120, 84, 88, 46, 3, 75, 104, 108, 168, 58, 240, 62, 192, 132, 136, 140, 4, 74, 152, 156, 5, 82, 336, 86, 264, 270, 184, 94, 480, 147, 300, 204, 312, 106, 432, 220, 7, 228, 232, 118, 5, 122, 248, 378, 448, 260, 528, 134
Offset: 1
Examples
n=3 has d(3) = 2 divisors (like all primes) and 3 is not divisible by 2, so we multiply: a(3) = 3*2 = 6. n=8 has d(8) = 4 divisors and 8 is divisible by 4, so we divide: a(8) = 8/4 = 2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^14, showing primes in red, composite prime powers in gold, even squarefree semiprimes in light green, other squarefree composites in dark green, and numbers neither squarefree nor prime powers in blue. Powerful numbers that are not prime powers are highlighted in light blue.
- Neal Gersh Tolunsky, Graph of first 150000 terms.
Programs
-
Mathematica
a[n_] := n * If[Divisible[n, d = DivisorSigma[0, n]], 1/d, d]; Array[a, 100] (* Amiram Eldar, Oct 01 2023 *)
-
PARI
a(n) = my(d=numdiv(n)); if (n % d, n*d, n/d); \\ Michel Marcus, Oct 01 2023
-
Python
from sympy import divisor_count def A366144(n): return n*d if (q:=divmod(n,d:=int(divisor_count(n))))[1] else q[0] # Chai Wah Wu, Oct 02 2023
Formula
sqrt(n)/2 <= a(n) <= 2*n*sqrt(n). - Yifan Xie, Oct 01 2023