A366145 The number of divisors of the largest divisor of n that is a cubefull number (A036966).
1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e < 3, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecprod(apply(x -> if(x < 3, 1, x+1), factor(n)[, 2]));
Formula
a(n) >= 1, with equality if and only if n is cubefree (A004709).
Multiplicative with a(p^e) = 1 if e <= 2 and e+1 otherwise.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 3/p^(3*s) - 2/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 - 1/p^2 + 3/p^3 + 1/p^4 - 2/p^5) = 1.76434793373691907811... .