cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366145 The number of divisors of the largest divisor of n that is a cubefull number (A036966).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, 1, x+1), factor(n)[, 2]));

Formula

a(n) = A000005(A360540(n)).
a(n) = A000005(n)/A366147(n).
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A000005(n), with equality if and only if n is cubefull (A036966).
Multiplicative with a(p^e) = 1 if e <= 2 and e+1 otherwise.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 3/p^(3*s) - 2/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 - 1/p^2 + 3/p^3 + 1/p^4 - 2/p^5) = 1.76434793373691907811... .