A366158 Number of distinct determinants of 3 X 3 matrices with entries from {0, 1, ..., n}.
1, 5, 25, 77, 179, 355, 609, 995, 1497, 2167, 2999, 4069, 5289, 6841, 8595, 10661, 13023, 15777, 18795, 22305, 26085, 30397, 35107, 40381, 45929, 52247, 58929, 66287, 74139, 82767, 91643, 101701, 112013, 123235
Offset: 0
Links
- Robert P. P. McKone, The distinct determinants for a(0)-a(18).
Crossrefs
Programs
-
Mathematica
mat[n_Integer?Positive] := mat[n] = Array[m, {n, n}]; flatMat[n_Integer?Positive] := flatMat[n] = Flatten[mat[n]]; detMat[n_Integer?Positive] := detMat[n] = Det[mat[n]] // FullSimplify; a[d_Integer?Positive, 0] = 1; a[d_Integer?Positive, n_Integer?Positive] := a[d, n] = Length[DeleteDuplicates[Flatten[ParallelTable[Evaluate[detMat[d]], ##] & @@ Table[{flatMat[d][[i]], 0, n}, {i, 1, d^2}]]]]; Table[a[3, n], {n, 0, 9}]
-
Python
from itertools import product def A366158(n): return len({a[0]*(a[4]*a[8] - a[5]*a[7]) - a[1]*(a[3]*a[8] - a[5]*a[6]) + a[2]*(a[3]*a[7] - a[4]*a[6]) for a in product(range(n+1),repeat=9)}) # Chai Wah Wu, Oct 06 2023
Extensions
a(19)-a(26) from Robin Visser, May 08 2025
a(27)-a(33) from Robin Visser, Aug 26 2025
Comments