A366168 Denominator of the second derivative of the n-th Bernoulli polynomial B(n,x).
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 1, 1, 3, 5, 5, 21, 1, 5, 15, 5, 1, 21, 7, 1, 1, 1, 1, 231, 7, 35, 3, 1, 1, 1365, 35, 7, 21, 55, 55, 105, 7, 7, 105, 35, 5, 663, 13, 11, 33, 55, 1, 57, 1, 5, 15, 1, 1, 15015, 715, 715, 33, 17, 85, 2415, 35, 1, 3, 55, 55, 285285, 19019, 1001
Offset: 1
Examples
B(5,x) = x^5 - (5x^4)/2 + (5 x^3)/3 - x/6 and B''(5,x) = 20x^3 - 30x^2 + 10x, so a(5) = 1. a(14) = A324370(13)/gcd(A324370(13), 14) = 210/gcd(210, 14) = 15.
Links
- Bernd C. Kellner, Table of n, a(n) for n = 1..10000
- Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
- Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.; arXiv:2310.01325 [math.NT], 2023.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Programs
-
Mathematica
(* k-th derivative of BP *) k = 2; Table[Denominator[Together[D[BernoulliB[n, x], {x, k}]]], {n, 1, 100}] (* exact denominator formula *) SD[n_, p_] := If[n < 1 || p < 2, 0, Plus@@IntegerDigits[n, p]]; DBP[n_, k_] := Module[{m = n-k+1, fac = FactorialPower[n, k]}, If[n < 1 || k < 1 || n <= k, Return[1]]; Times@@Select[Prime[Range[PrimePi[(m+1)/(2 + Mod[m+1, 2])]]], !Divisible[fac, #] && SD[m, #] >= #&]]; k = 2; Table[DBP[n, k], {n, 1, 100}]
-
Python
from math import lcm from sympy import Poly, diff, bernoulli from sympy.abc import x def A366168(n): return lcm(*(c.q for c in Poly(diff(bernoulli(n,x),x,2)).coeffs())) if n>=3 else 1 # Chai Wah Wu, Oct 04 2023
Comments