cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366184 G.f. A(x) satisfies A(x) = (1 + x*A(x)^3)/(1 - x)^3.

Original entry on oeis.org

1, 4, 21, 163, 1487, 14697, 153226, 1659338, 18483960, 210437161, 2437721418, 28640748192, 340473075541, 4087735789616, 49494986770104, 603699827411356, 7410709463933414, 91484338902961485, 1135029142529785303, 14145212892466682781, 176993823220824229047
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+8*k+2, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+8*k+2,n-k) * binomial(3*k,k)/(2*k+1).

A366182 G.f. A(x) satisfies A(x) = 1/(1 - x)^3 + x*A(x)^3/(1 - x).

Original entry on oeis.org

1, 4, 19, 128, 1037, 9221, 86847, 851073, 8586951, 88598014, 930473246, 9913648325, 106891041270, 1164153791878, 12788021717902, 141518588447588, 1576271179332762, 17657110535606919, 198792746866201879, 2248222906227731856, 25529220583699163958
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2023

Keywords

Crossrefs

Partial sums of A366180.

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+6*k+2, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+6*k+2,n-k) * binomial(3*k,k)/(2*k+1).
Showing 1-2 of 2 results.