A366192 Pairs (i, j) of noncoprime positive integers sorted first by i + j then by i.
2, 2, 2, 4, 3, 3, 4, 2, 2, 6, 4, 4, 6, 2, 3, 6, 6, 3, 2, 8, 4, 6, 5, 5, 6, 4, 8, 2, 2, 10, 3, 9, 4, 8, 6, 6, 8, 4, 9, 3, 10, 2, 2, 12, 4, 10, 6, 8, 7, 7, 8, 6, 10, 4, 12, 2, 3, 12, 5, 10, 6, 9, 9, 6, 10, 5, 12, 3, 2, 14, 4, 12, 6, 10, 8, 8, 10, 6, 12, 4, 14, 2
Offset: 1
Examples
The first few pairs are, seen as an irregular triangle (where rows with a prime index are empty (and are therefore missing)): [2, 2], [2, 4], [3, 3], [4, 2], [2, 6], [4, 4], [6, 2], [3, 6], [6, 3], [2, 8], [4, 6], [5, 5], [6, 4], [ 8, 2], [2, 10], [3, 9], [4, 8], [6, 6], [ 8, 4], [ 9, 3], [10, 2], [2, 12], [4, 10], [6, 8], [7, 7], [ 8, 6], [10, 4], [12, 2], [3, 12], [5, 10], [6, 9], [9, 6], [10, 5], [12, 3], ... There are A016035(n) pairs in row n.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..9886
Programs
-
Maple
aList := proc(upto) local F, P, n, t, count; P := NULL; count := 0: for n from 2 while count < upto do F := select(t -> igcd(t, n - t) <> 1, [$1..n-1]); P := P, seq([t, n - t], t = F); count := count + nops([F]) od: ListTools:-Flatten([P]) end: aList(16);
-
Mathematica
A366192row[n_]:=Select[Array[{#,n-#}&,n-1],!CoprimeQ[First[#],Last[#]]&]; Array[A366192row,20,2] (* Paolo Xausa, Nov 28 2023 *)
-
Python
from math import gcd from itertools import chain, count, islice def A366192_gen(): # generator of terms return chain.from_iterable((i,n-i) for n in count(2) for i in range(1,n) if gcd(i,n-i)>1) A366192_list = list(islice(A366192_gen(),30)) # Chai Wah Wu, Oct 10 2023
Comments