cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366193 For n >= 0, a(n) is the least x >= 0 such that x^2 + (x + 2*n)^2 + 1 = p, p prime number (A000040).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 9, 0, 0, 6, 0, 6, 0, 0, 3, 15, 1, 2, 0, 1, 0, 6, 1, 2, 6, 3, 9, 0, 0, 6, 15, 4, 5, 0, 3, 2, 6, 0, 2, 3, 1, 9, 0, 4, 3, 0, 7, 0, 3, 1, 6, 6, 1, 5, 6, 0, 2, 6, 0, 6, 0, 1, 0, 0, 13, 0, 6, 0, 6, 3, 4, 11, 12, 0, 3, 0, 9, 3, 0, 3, 0, 21, 9, 2, 3, 0, 6, 18, 0, 3
Offset: 0

Views

Author

Ctibor O. Zizka, Oct 03 2023

Keywords

Comments

For a(n) = 0 the resulting primes p >= 5 see in A002496.

Examples

			n = 0: x^2 + x^2 + 1 = p is valid for the least x = 1, p = 3, thus a(0) = 1.
n = 6: x^2 + (x + 12)^2 + 1 = p is valid for the least x = 9, p = 523, thus a(6) = 9.
		

Crossrefs

Programs

  • PARI
    a(n) = my(x=0); while (!isprime(x^2 + (x + 2*n)^2 + 1), x++); x; \\ Michel Marcus, Oct 03 2023

Formula

a(n) = 0 for n from A001912.

Extensions

More terms from Michel Marcus, Oct 03 2023