cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366200 G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^3*A(x)^3.

Original entry on oeis.org

1, 1, 6, 33, 209, 1425, 10206, 75751, 577494, 4495368, 35582439, 285524184, 2317387098, 18990744137, 156918815760, 1305927563487, 10936673012579, 92098612059051, 779391530714589, 6624730079900931, 56532669993156696, 484156547579505717, 4159926573597719575
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*k, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*k,n-k) * binomial(3*k,k)/(2*k+1).

A378786 G.f. A(x) satisfies A(x) = 1 + x * (1+x)^2 * A(x)^4.

Original entry on oeis.org

1, 1, 6, 39, 296, 2435, 21138, 190603, 1767968, 16761424, 161697576, 1582171216, 15664531716, 156637712953, 1579664567130, 16048129755157, 164085811289360, 1687224436103842, 17436287104620980, 181001686332329224, 1886522317836670988, 19734386503541838083
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=2, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(2*k,n-k)/(4*k+1) = Sum_{k=0..n} binomial(2*k,n-k) * A002293(k).
Showing 1-2 of 2 results.