A366227 O.g.f. A(x) satisfies: A(x) = 1 + x*Sum_{n>=0} 3^n * log( A(2^n*x) )^n / n!.
1, 1, 6, 138, 8648, 1272948, 424058592, 334836466656, 728593565874816, 5632989888855720864, 184539760855097635059200, 25027477244647424010315231744, 13206715998089387470949589465286656, 26431031766456352400292737393044784872448, 199091399877503863934385670788355318673030504448
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 6*x^2 + 138*x^3 + 8648*x^4 + 1272948*x^5 + 424058592*x^6 + 334836466656*x^7 + 728593565874816*x^8 + ... where A(x) = 1 + x*[1 + 3*log(A(2*x)) + 3^2*log(A(2^2*x))^2/2! + 3^3*log(A(2^2*x))^3/3! + ... + 3^n*log(A(2^n*x))^n/n! + ...]. RELATED SERIES. log(A(x)) = x + 11*x^2/2 + 397*x^3/3 + 33991*x^4/4 + 6318201*x^5/5 + 2536406543*x^6/6 + 2340834765809*x^7/7 + ... RELATED TABLE. The table of coefficients of x^k in A(x)^(3*2^n) begins: n=0: [1, 3, 21, 451, 26898, 3876222, ...]; n=1: [1, 6, 51, 1028, 56943, 7932774, ...]; n=2: [1, 12, 138, 2668, 128823, 16653720, ...]; n=3: [1, 24, 420, 8648, 340722, 37135560, ...]; n=4: [1, 48, 1416, 37456, 1272948, 97890096, ...]; n=5: [1, 96, 5136, 210848, 8146728, 424058592, ...]; n=6: [1, 192, 19488, 1407808, 83154768, 4578119616, 334836466656, ...]; ... in which the main diagonal equals this sequence shift left, illustrating that a(n+1) = [x^n] A(x)^(3*2^n) for n >= 0.
Programs
-
PARI
{a(n) = my(A=[1, 1]); for(i=1, n, A=concat(A, Vec(Ser(A)^(3*2^(#A-1)))[ #A])); A[n+1]} for(n=0, 15, print1(a(n), ", "))
-
PARI
{a(n) = my(A=1+x); for(i=1, n, A = 1 + x*sum(m=0, #A, 3^m*log( subst(Ser(A), x, 2^m*x +x*O(x^n)))^m/m!) ); polcoeff(A, n)} for(n=0, 15, print1(a(n), ", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*Sum_{n>=0} 3^n * log( A(2^n*x) )^n / n!.
(2) a(n+1) = [x^n] A(x)^(3*2^n) for n >= 0, with a(0)=1.
Comments