cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A161633 E.g.f. satisfies A(x) = 1/(1 - x*exp(x*A(x))).

Original entry on oeis.org

1, 1, 4, 27, 268, 3525, 57966, 1146061, 26500552, 702069129, 20974309210, 697754762001, 25584428686620, 1025230366195789, 44579963354153878, 2090676600895922565, 105191995364927688976, 5652501986238910061073, 323083811850594613809714, 19573120681427758058921881
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 268*x^4/4! + 3525*x^5/5! +...
exp(x*A(x)) = 1 + x + 3*x^2/2! + 19*x^3/3! + 181*x^4/4! + 2321*x^5/5! +...
		

Crossrefs

Cf. A006153, A161630 (e.g.f. = exp(x*A(x))), A213644, A364980, A364981.

Programs

  • Mathematica
    Flatten[{1,Table[n!*Sum[Binomial[n+1,k]/(n+1) * k^(n-k)/(n-k)!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    a(n,m=1)=n!*sum(k=0,n,binomial(n+m,k)*m/(n+m)*k^(n-k)/(n-k)!)

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = 1 + x*A(x)*exp(x*A(x)).
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x*exp(x)) ).
(3) A(x) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n/n! * A(x)^n * exp(-(n+m-1)*x*A(x)) for all fixed nonnegative m.
a(n) = n! * Sum_{k=0..n} binomial(n+1,k)/(n+1) * k^(n-k)/(n-k)!.
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then a(n,m) = n! * Sum_{k=0..n} binomial(n+m,k)*m/(n+m) * k^(n-k)/(n-k)!.
a(n) ~ n^(n-1) * c * ((c-1)*c)^(n+1/2) / (sqrt(2*c-1) * exp(n)), where c = 1 + 1/(2*LambertW(1/2)) = 2.4215299358831166... - Vaclav Kotesovec, Jan 10 2014

A366232 Expansion of e.g.f. A(x) satisfying A(x) = 1 + x*A(x) * exp(2*x*A(x)).

Original entry on oeis.org

1, 1, 6, 54, 728, 13000, 290352, 7800016, 245115264, 8826560640, 358463525120, 16212238054144, 808215885708288, 44035925223746560, 2603618739995621376, 166031767704180111360, 11359670347331723952128, 830065763154102656204800, 64518486557995327748898816
Offset: 0

Views

Author

Paul D. Hanna, Oct 05 2023

Keywords

Comments

Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum_{n>=1} n^(n-1) * x^n/n! * F(x)^n * exp(-n*x*F(x)),
(2) F(x) = (2/x) * Sum_{n>=1} n*(n+1)^(n-2) * x^n/n! * F(x)^n * exp(-(n+1)*x*F(x)),
(3) F(x) = (3/x) * Sum_{n>=1} n*(n+2)^(n-2) * x^n/n! * F(x)^n * exp(-(n+2)*x*F(x)),
(4) F(x) = (4/x) * Sum_{n>=1} n*(n+3)^(n-2) * x^n/n! * F(x)^n * exp(-(n+3)*x*F(x)),
(5) F(x) = (k/x) * Sum_{n>=1} n*(n+k-1)^(n-2) * x^n/n! * F(x)^n * exp(-(n+k-1)*x*F(x)) for all fixed nonzero k.

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 54*x^3/3! + 728*x^4/4! + 13000*x^5/5! + 290352*x^6/6! + 7800016*x^7/7! + 245115264*x^8/8! + ...
where A(x) satisfies A(x) = 1 + x*A(x) * exp(2*x*A(x))
also
A(x) = 1 + 1^0*x*A(x)*exp(+1*x*A(x))/1! + 2^1*x^2*A(x)^2*exp(-0*x*A(x))/2! + 3^2*x^3*A(x)^3*exp(-1*x*A(x))/3! + 4^3*x^4*A(x)^4*exp(-2*x*A(x))/4! + 5^4*x^5*A(x)^5*exp(-3*x*A(x))/5! + 6^5*x^6*A(x)^6*exp(-4*x*A(x))/6! + ...
and
A(x) = 1 + 3*1*3^(-1)*x*A(x)*exp(-1*x*A(x))/1! + 3*2*4^0*x^2*A(x)^2*exp(-2*x*A(x))/2! + 3*3*5^1*x^3*A(x)^3*exp(-3*x*A(x))/3! + 3*4*6^2*x^4*A(x)^4*exp(-4*x*A(x))/4! + 3*5*7^3*x^5*A(x)^5*exp(-5*x*A(x))/5! + ...
RELATED SERIES.
exp(x*A(x)) = 1 + x + 3*x^2/2! + 25*x^3/3! + 313*x^4/4! + 5341*x^5/5! + ... + A212722(n)*x^n/n! + ...
		

Crossrefs

Cf. A365772 (dual), A212722 (exp(x*A(x))).

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1 + x*A[x] * E^(2*x*A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0,nmax]! (* Vaclav Kotesovec, Oct 06 2023 *)
  • PARI
    /* a(n,m) = coefficient of x^n/n! in A(x)^m, here at m = 1 */
    {a(n, m=1) = n!*sum(k=0, n, binomial(n+m, n-k)*m/(n+m) * 2^k * (n-k)^k/k!)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = (1/x) * serreverse( x/(1 + x*exp(2*x +O(x^(n+2)))) )); n!*polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = n! * Sum_{k=0..n} binomial(n+1, n-k)/(n+1) * 2^k * (n-k)^k / k!.
Let A(x)^m = Sum_{n>=0} a(n,m) * x^n/n! then a(n,m) = n!*Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * 2^k * (n-k)^k/k!.
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = 1 + x*A(x) * exp(2*x*A(x)).
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x*exp(2*x)) ).
(3) A( x/(1 + x*exp(2*x)) ) = 1 + x*exp(2*x).
(4) A(x) = 1 + (m+1) * Sum_{n>=1} n*(n+m)^(n-2) * x^n/n! * A(x)^n * exp(-(n+m-2)*x*A(x)) for all fixed nonnegative m.
(4.a) A(x) = 1 + Sum_{n>=1} n^(n-1) * x^n/n! * A(x)^n * exp(-(n-2)*x*A(x)).
(4.b) A(x) = 1 + 2 * Sum_{n>=1} n*(n+1)^(n-2) * x^n/n! * A(x)^n * exp(-(n-1)*x*A(x)).
(4.c) A(x) = 1 + 3 * Sum_{n>=1} n*(n+2)^(n-2) * x^n/n! * A(x)^n * exp(-n*x*A(x)).
(4.d) A(x) = 1 + 4 * Sum_{n>=1} n*(n+3)^(n-2) * x^n/n! * A(x)^n * exp(-(n+1)*x*A(x)).
a(n) ~ n^(n-1) * (1 + 2*LambertW(1/sqrt(2)))^(n + 3/2) / (sqrt(1 + LambertW(1/sqrt(2))) * 2^(n+2) * exp(n) * LambertW(1/sqrt(2))^(2*n + 3/2)). - Vaclav Kotesovec, Oct 06 2023

A366233 Expansion of e.g.f. A(x) satisfying A(x) = 1 + x*A(x) * exp(3*x*A(x)).

Original entry on oeis.org

1, 1, 8, 87, 1428, 31125, 847818, 27785205, 1065267864, 46802921769, 2319200977230, 127985909702409, 7785440359004916, 517616528753919933, 37344834374921549154, 2906043724955696034285, 242627026212699695954352, 21634774261037677172406609, 2052077586846349144929739542
Offset: 0

Views

Author

Paul D. Hanna, Oct 05 2023

Keywords

Comments

Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum_{n>=1} n^(n-1) * x^n/n! * F(x)^n * exp(-n*x*F(x)),
(2) F(x) = (2/x) * Sum_{n>=1} n*(n+1)^(n-2) * x^n/n! * F(x)^n * exp(-(n+1)*x*F(x)),
(3) F(x) = (3/x) * Sum_{n>=1} n*(n+2)^(n-2) * x^n/n! * F(x)^n * exp(-(n+2)*x*F(x)),
(4) F(x) = (4/x) * Sum_{n>=1} n*(n+3)^(n-2) * x^n/n! * F(x)^n * exp(-(n+3)*x*F(x)),
(5) F(x) = (k/x) * Sum_{n>=1} n*(n+k-1)^(n-2) * x^n/n! * F(x)^n * exp(-(n+k-1)*x*F(x)) for all fixed nonzero k.

Examples

			E.g.f.: A(x) = 1 + x + 8*x^2/2! + 87*x^3/3! + 1428*x^4/4! + 31125*x^5/5! + 847818*x^6/6! + 27785205*x^7/7! + 1065267864*x^8/8! + ...
where A(x) satisfies A(x) = 1 + x*A(x) * exp(3*x*A(x))
also
A(x) = 1 + 1^0*x*A(x)*exp(+2*x*A(x))/1! + 2^1*x^2*A(x)^2*exp(+1*x*A(x))/2! + 3^2*x^3*A(x)^3*exp(-0*x*A(x))/3! + 4^3*x^4*A(x)^4*exp(-1*x*A(x))/4! + 5^4*x^5*A(x)^5*exp(-2*x*A(x))/5! + 6^5*x^6*A(x)^6*exp(-3*x*A(x))/6! + ...
and
A(x) = 1 + 4*1*4^(-1)*x*A(x)*exp(-1*x*A(x))/1! + 4*2*5^0*x^2*A(x)^2*exp(-2*x*A(x))/2! + 4*3*6^1*x^3*A(x)^3*exp(-3*x*A(x))/3! + 4*4*7^2*x^4*A(x)^4*exp(-4*x*A(x))/4! + 4*5*8^3*x^5*A(x)^5*exp(-5*x*A(x))/5! + ...
RELATED SERIES.
exp(x*A(x)) = 1 + x + 3*x^2/2! + 31*x^3/3! + 469*x^4/4! + 9681*x^5/5! + 254701*x^6/6! + ... + A212917(n)*x^n/n! + ...
		

Crossrefs

Cf. A365773 (dual), A212917 (exp(x*A(x))).

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1 + x*A[x] * E^(3*x*A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0,nmax]! (* Vaclav Kotesovec, Oct 06 2023 *)
  • PARI
    /* a(n,m) = coefficient of x^n/n! in A(x)^m, here at m = 1 */
    {a(n, m=1) = n!*sum(k=0, n, binomial(n+m, n-k)*m/(n+m) * 3^k * (n-k)^k/k!)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = (1/x) * serreverse( x/(1 + x*exp(3*x +O(x^(n+2)))) )); n!*polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = n! * Sum_{k=0..n} binomial(n+1, n-k)/(n+1) * 3^k * (n-k)^k / k!.
Let A(x)^m = Sum_{n>=0} a(n,m) * x^n/n! then a(n,m) = n!*Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * 3^k * (n-k)^k/k!.
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = 1 + x*A(x) * exp(3*x*A(x)).
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x*exp(3*x)) ).
(3) A( x/(1 + x*exp(3*x)) ) = 1 + x*exp(3*x).
(4) A(x) = 1 + (m+1) * Sum_{n>=1} n*(n+m)^(n-2) * x^n/n! * A(x)^n * exp(-(n+m-3)*x*A(x)) for all fixed nonnegative m.
(4.a) A(x) = 1 + Sum_{n>=1} n^(n-1) * x^n/n! * A(x)^n * exp(-(n-3)*x*A(x)).
(4.b) A(x) = 1 + 2 * Sum_{n>=1} n*(n+1)^(n-2) * x^n/n! * A(x)^n * exp(-(n-2)*x*A(x)).
(4.c) A(x) = 1 + 3 * Sum_{n>=1} n*(n+2)^(n-2) * x^n/n! * A(x)^n * exp(-(n-1)*x*A(x)).
(4.d) A(x) = 1 + 4 * Sum_{n>=1} n*(n+3)^(n-2) * x^n/n! * A(x)^n * exp(-n*x*A(x)).
(4.e) A(x) = 1 + 5 * Sum_{n>=1} n*(n+4)^(n-2) * x^n/n! * A(x)^n * exp(-(n+1)*x*A(x)).
a(n) ~ 3^n * (1 + 2*LambertW(sqrt(3)/2))^(n + 3/2) * n^(n-1) / (sqrt(1 + LambertW(sqrt(3)/2)) * 2^(2*n + 2) * exp(n) * LambertW(sqrt(3)/2)^(2*n + 3/2)). - Vaclav Kotesovec, Oct 06 2023

A366234 Expansion of e.g.f. A(x) satisfying A(x) = 1 + x*A(x) * exp(4*x*A(x)).

Original entry on oeis.org

1, 1, 10, 126, 2392, 60600, 1916304, 72917488, 3246171520, 165609099648, 9529240349440, 610657739172096, 43136025287678976, 3330356645773880320, 279024535906794539008, 25214258236430338160640, 2444656672390982922502144, 253144081975231633923342336
Offset: 0

Views

Author

Paul D. Hanna, Oct 05 2023

Keywords

Comments

Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum_{n>=1} n^(n-1) * x^n/n! * F(x)^n * exp(-n*x*F(x)),
(2) F(x) = (2/x) * Sum_{n>=1} n*(n+1)^(n-2) * x^n/n! * F(x)^n * exp(-(n+1)*x*F(x)),
(3) F(x) = (3/x) * Sum_{n>=1} n*(n+2)^(n-2) * x^n/n! * F(x)^n * exp(-(n+2)*x*F(x)),
(4) F(x) = (4/x) * Sum_{n>=1} n*(n+3)^(n-2) * x^n/n! * F(x)^n * exp(-(n+3)*x*F(x)),
(5) F(x) = (k/x) * Sum_{n>=1} n*(n+k-1)^(n-2) * x^n/n! * F(x)^n * exp(-(n+k-1)*x*F(x)) for all fixed nonzero k.

Examples

			E.g.f.: A(x) = 1 + x + 10*x^2/2! + 126*x^3/3! + 2392*x^4/4! + 60600*x^5/5! + 1916304*x^6/6! + 72917488*x^7/7! + 3246171520*x^8/8! + ...
where A(x) satisfies A(x) = 1 + x*A(x) * exp(4*x*A(x))
also
A(x) = 1 + 1^0*x*A(x)*exp(+3*x*A(x))/1! + 2^1*x^2*A(x)^2*exp(+2*x*A(x))/2! + 3^2*x^3*A(x)^3*exp(+1*x*A(x))/3! + 4^3*x^4*A(x)^4*exp(-0*x*A(x))/4! + 5^4*x^5*A(x)^5*exp(-1*x*A(x))/5! + 6^5*x^6*A(x)^6*exp(-2*x*A(x))/6! + ...
and
A(x) = 1 + 5*1*5^(-1)*x*A(x)*exp(-1*x*A(x))/1! + 5*2*6^0*x^2*A(x)^2*exp(-2*x*A(x))/2! + 5*3*7^1*x^3*A(x)^3*exp(-3*x*A(x))/3! + 5*4*8^2*x^4*A(x)^4*exp(-4*x*A(x))/4! + 5*5*9^3*x^5*A(x)^5*exp(-5*x*A(x))/5! + ...
RELATED SERIES.
exp(x*A(x)) = 1 + x + 3*x^2/2! + 37*x^3/3! + 649*x^4/4! + 15461*x^5/5! + 471571*x^6/6! + ... + A245265(n)*x^n/n! + ...
		

Crossrefs

Cf. A365774 (dual), A245265 (exp(x*A(x))).

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1 + x*A[x] * E^(4*x*A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0,nmax]! (* Vaclav Kotesovec, Oct 06 2023 *)
  • PARI
    /* a(n,m) = coefficient of x^n/n! in A(x)^m, here at m = 1 */
    {a(n, m=1) = n!*sum(k=0, n, binomial(n+m, n-k)*m/(n+m) * 4^k * (n-k)^k/k!)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = (1/x) * serreverse( x/(1 + x*exp(4*x +O(x^(n+2)))) )); n!*polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = n! * Sum_{k=0..n} binomial(n+1, n-k)/(n+1) * 4^k * (n-k)^k / k!.
Let A(x)^m = Sum_{n>=0} a(n,m) * x^n/n! then a(n,m) = n!*Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * 4^k * (n-k)^k/k!.
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = 1 + x*A(x) * exp(4*x*A(x)).
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x*exp(4*x)) ).
(3) A( x/(1 + x*exp(4*x)) ) = 1 + x*exp(4*x).
(4) A(x) = 1 + (m+1) * Sum_{n>=1} n*(n+m)^(n-2) * x^n/n! * A(x)^n * exp(-(n+m-4)*x*A(x)) for all fixed nonnegative m.
(4.a) A(x) = 1 + Sum_{n>=1} n^(n-1) * x^n/n! * A(x)^n * exp(-(n-4)*x*A(x)).
(4.b) A(x) = 1 + 2 * Sum_{n>=1} n*(n+1)^(n-2) * x^n/n! * A(x)^n * exp(-(n-3)*x*A(x)).
(4.c) A(x) = 1 + 3 * Sum_{n>=1} n*(n+2)^(n-2) * x^n/n! * A(x)^n * exp(-(n-2)*x*A(x)).
(4.d) A(x) = 1 + 4 * Sum_{n>=1} n*(n+3)^(n-2) * x^n/n! * A(x)^n * exp(-(n-1)*x*A(x)).
(4.e) A(x) = 1 + 5 * Sum_{n>=1} n*(n+4)^(n-2) * x^n/n! * A(x)^n * exp(-n*x*A(x)).
(4.f) A(x) = 1 + 6 * Sum_{n>=1} n*(n+5)^(n-2) * x^n/n! * A(x)^n * exp(-(n+1)*x*A(x)).
a(n) ~ (1 + 2*LambertW(1))^(n + 3/2) * n^(n-1) / (4 * sqrt(1 + LambertW(1)) * exp(n) * LambertW(1)^(2*n + 3/2)). - Vaclav Kotesovec, Oct 06 2023

A365775 Expansion of g.f. A(x) satisfying A(x) = 1 + x*A(x)/(1 - 5*x*A(x))^2.

Original entry on oeis.org

1, 1, 11, 106, 1061, 11226, 124026, 1414211, 16515981, 196551736, 2375042076, 29062573926, 359407971786, 4484868410231, 56399986492661, 714067825064426, 9094408567049701, 116436367409647736, 1497734068943432856, 19346547929074098836, 250851388061224003276
Offset: 0

Views

Author

Paul D. Hanna, Oct 04 2023

Keywords

Comments

Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum{n>=1} n^(n-1) * x^n * F(x)^n / (1 + n*x*F(x))^(n+1),
(2) F(x) = (2/x) * Sum{n>=1} n*(n+1)^(n-2) * x^n * F(x)^n / (1 + (n+1)*x*F(x))^(n+1),
(3) F(x) = (3/x) * Sum{n>=1} n*(n+2)^(n-2) * x^n * F(x)^n / (1 + (n+2)*x*F(x))^(n+1),
(4) F(x) = (4/x) * Sum{n>=1} n*(n+3)^(n-2) * x^n * F(x)^n / (1 + (n+3)*x*F(x))^(n+1),
(5) F(x) = (k/x) * Sum{n>=1} n*(n+k-1)^(n-2) * x^n * F(x)^n / (1 + (n+k-1)*x*F(x))^(n+1) for all fixed nonzero k.

Examples

			G.f.: A(x) = 1 + x + 11*x^2 + 106*x^3 + 1061*x^4 + 11226*x^5 + 124026*x^6 + 1414211*x^7 + 16515981*x^8 + 196551736*x^9 + 2375042076*x^10 + ...
where A(x) satisfies A(x) = 1 + x*A(x)/(1 - 5*x*A(x))^2
also
A(x) = 1 + 1^0*x*A(x)/(1 + (-4)*x*A(x))^2 + 2^1*x^2*A(x)^2/(1 + (-3)*x*A(x))^3 + 3^2*x^3*A(x)^3/(1 + (-2)*x*A(x))^4 + 4^3*x^4*A(x)^4/(1 + (-1)*x*A(x))^5 + 5^4*x^5*A(x)^5/(1 + 0*x*A(x))^6 + 6^5*x^6*A(x)^6/(1 + 1*x*A(x))^7 + ...
and
A(x) = 1 + 6*1*6^(-1)*x*A(x)/(1 + 1*x*A(x))^2 + 6*2*7^0*x^2*A(x)^2/(1 + 2*x*A(x))^3 + 6*3*8^1*x^3*A(x)^3/(1 + 3*x*A(x))^4 + 6*4*9^2*x^4*A(x)^4/(1 + 4*x*A(x))^5 + 6*5*10^3*x^5*A(x)^5/(1 + 5*x*A(x))^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 5^k)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = (1/x) * serreverse( x/(1 + x/(1 - 5*x +O(x^(n+2)) )^2) ) ); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

a(n) = Sum{k=0..n} binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 5^k.
Let A(x)^m = Sum_{n>=0} a(n,m) * x^n then a(n,m) = Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * binomial(2*n-k-1, k) * 5^k.
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*A(x)/(1 - 5*x*A(x))^2.
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x/(1 - 5*x)^2) ).
(3) A( x/(1 + x/(1 - 5*x)^2) ) = 1 + x/(1 - 5*x)^2.
(4) A(x) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n * A(x)^n / (1 + (n+m-5)*x*A(x))^(n+1) for all fixed nonnegative m.
(4.a) A(x) = 1 + Sum{n>=1} n^(n-1) * x^n * A(x)^n / (1 + (n-5)*x*A(x))^(n+1).
(4.b) A(x) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n * A(x)^n / (1 + (n-4)*x*A(x))^(n+1).
(4.c) A(x) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n * A(x)^n / (1 + (n-3)*x*A(x))^(n+1).
(4.d) A(x) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n * A(x)^n / (1 + (n-2)*x*A(x))^(n+1).
(4.e) A(x) = 1 + 5 * Sum{n>=1} n*(n+4)^(n-2) * x^n * A(x)^n / (1 + (n-1)*x*A(x))^(n+1).
(4.f) A(x) = 1 + 6 * Sum{n>=1} n*(n+5)^(n-2) * x^n * A(x)^n / (1 + n*x*A(x))^(n+1).
a(n) ~ sqrt(3) * 5^(2*n) * (19^(3/2 + n) / (2*sqrt((113 + (28*(47225 + 1083*sqrt(1905))^(1/3))/5^(2/3) - 2632/(5*(47225 + 1083*sqrt(1905)))^(1/3))*Pi) * n^(3/2) * (68 + (2*(-1496331 + 60325*sqrt(1905)))^(1/3)/3^(2/3) - 9214*2^(2/3)/(3*(-1496331 + 60325*sqrt(1905)))^(1/3))^(n + 1/2))). - Vaclav Kotesovec, Oct 06 2023

A366230 Expansion of e.g.f. A(x,y) satisfying A(x,y) = 1 + x*A(x,y) * exp(x*y * A(x,y)), as a triangle read by rows.

Original entry on oeis.org

1, 1, 0, 2, 2, 0, 6, 18, 3, 0, 24, 144, 96, 4, 0, 120, 1200, 1800, 400, 5, 0, 720, 10800, 28800, 16200, 1440, 6, 0, 5040, 105840, 441000, 470400, 119070, 4704, 7, 0, 40320, 1128960, 6773760, 11760000, 6021120, 762048, 14336, 8, 0, 362880, 13063680, 106686720, 274337280, 238140000, 65028096, 4408992, 41472, 9, 0
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2023

Keywords

Comments

A161633(n) = Sum_{k=0..n} T(n,k) for n >= 0.
A366232(n) = Sum_{k=0..n} T(n,k) * 2^k for n >= 0.
A366233(n) = Sum_{k=0..n} T(n,k) * 3^k for n >= 0.
A366234(n) = Sum_{k=0..n} T(n,k) * 4^k for n >= 0.
A366235(n) = Sum_{k=0..n} T(n,k) * 5^k for n >= 0.

Examples

			E.g.f. A(x,y) = 1 + x + (2*y + 2)*x^2/2! + (3*y^2 + 18*y + 6)*x^3/3! + (4*y^3 + 96*y^2 + 144*y + 24)*x^4/4! + (5*y^4 + 400*y^3 + 1800*y^2 + 1200*y + 120)*x^5/5! + (6*y^5 + 1440*y^4 + 16200*y^3 + 28800*y^2 + 10800*y + 720)*x^6/6! + (7*y^6 + 4704*y^5 + 119070*y^4 + 470400*y^3 + 441000*y^2 + 105840*y + 5040)*x^7/7! + (8*y^7 + 14336*y^6 + 762048*y^5 + 6021120*y^4 + 11760000*y^3 + 6773760*y^2 + 1128960*y + 40320)*x^8/8! + ...
This triangle of coefficients T(n,k) of x^n*y^k/n! in A(x,y) begins
 1;
 1, 0;
 2, 2, 0;
 6, 18, 3, 0;
 24, 144, 96, 4, 0;
 120, 1200, 1800, 400, 5, 0;
 720, 10800, 28800, 16200, 1440, 6, 0;
 5040, 105840, 441000, 470400, 119070, 4704, 7, 0;
 40320, 1128960, 6773760, 11760000, 6021120, 762048, 14336, 8, 0;
 362880, 13063680, 106686720, 274337280, 238140000, 65028096, 4408992, 41472, 9, 0;
 ...
		

Crossrefs

Programs

  • PARI
    {T(n,k) = n! * binomial(n+1, n-k)/(n+1) * (n-k)^k/k!}
    for(n=0,10, for(k=0,n, print1(T(n,k),", "));print(""))

Formula

T(n,k) = n! * binomial(n+1, n-k)/(n+1) * (n-k)^k / k!.
Let A(x,y)^m = Sum_{n>=0} a(n,m) * x^n/n! then a(n,m) = n!*Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * y^k * (n-k)^k/k!.
E.g.f. A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} T(n,k)*y^k satisfies the following formulas.
(1) A(x,y) = 1 + x*A(x) * exp(x*y*A(x,y)).
(2) A(x,y) = (1/x) * Series_Reversion( x/(1 + x*exp(x*y)) ).
(3) A( x/(1 + x*exp(x*y)), y) = 1 + x*exp(x*y).
(4) A(x,y) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n/n! * A(x,y)^n * exp(-(n+m-y)*x*A(x,y)) for all fixed nonnegative m.
(4.a) A(x,y) = 1 + Sum{n>=1} n^(n-1) * x^n/n! * A(x,y)^n * exp(-(n-y)*x*A(x)).
(4.b) A(x,y) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n/n! * A(x,y)^n * exp(-(n+1-y)*x*A(x,y)).
(4.c) A(x,y) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n/n! * A(x,y)^n * exp(-(n+2-y)*x*A(x,y)).
(4.d) A(x,y) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n/n! * A(x,y)^n * exp(-(n+3-y)*x*A(x,y)).
(4.e) A(x,y) = 1 + 5 * Sum{n>=1} n*(n+4)^(n-2) * x^n/n! * A(x,y)^n * exp(-(n+4-y)*x*A(x,y)).
Showing 1-6 of 6 results.