cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366236 G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^2*A(x)^2.

Original entry on oeis.org

1, 2, 6, 25, 110, 520, 2566, 13073, 68244, 363129, 1962304, 10739914, 59411546, 331652408, 1865903040, 10569319231, 60227702736, 345015430415, 1985747398748, 11477353063881, 66590427901454, 387685469752989, 2264180109124196, 13261401158297918
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*k+1, n-k)*binomial(2*k, k)/(k+1));

Formula

G.f.: 2*(1+x) / (1 + sqrt(1-4*x*(1+x)^3)).
a(n) = Sum_{k=0..n} binomial(3*k+1,n-k) * binomial(2*k,k)/(k+1).

A366237 G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^3*A(x)^2.

Original entry on oeis.org

1, 2, 7, 33, 161, 843, 4601, 25896, 149254, 876480, 5225616, 31547730, 192470212, 1184804588, 7349888208, 45902094845, 288368474907, 1821096958308, 11554270204142, 73615309821574, 470795634833760, 3021222108762826, 19448517295201332
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, n-k)*binomial(2*k, k)/(k+1));

Formula

G.f.: 2*(1+x) / (1 + sqrt(1-4*x*(1+x)^4)).
a(n) = Sum_{k=0..n} binomial(4*k+1,n-k) * binomial(2*k,k)/(k+1).
Showing 1-2 of 2 results.