A366243 Numbers that are products of "Fermi-Dirac primes" (A050376) that are powers of primes with exponents that are not powers of 4.
1, 4, 9, 25, 36, 49, 100, 121, 169, 196, 225, 256, 289, 361, 441, 484, 529, 676, 841, 900, 961, 1024, 1089, 1156, 1225, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2304, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900, 5041, 5329
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
mdQ[n_] := AllTrue[IntegerDigits[n, 4], # < 2 &]; q[e_] := EvenQ[e] && mdQ[e/2]; Select[Range[6000], # == 1 || AllTrue[FactorInteger[#][[;; , 2]], q] &]
-
PARI
ismd(n) = {my(d = digits(n, 4)); for(i = 1, #d, if(d[i] > 1, return(0))); 1;} is(n) = {my(e = factor(n)[ ,2]); for(i = 1, #e, if(e[i]%2 || !ismd(e[i]/2), return(0))); 1;}
Formula
Sum_{n>=1} 1/a(n) = Product_{k>=0} zeta(2^(2*k+1))/zeta(2^(2*k+2)) = 1.52599127273749217982... (this is the constant c in A366242).
Comments