cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A366245 The largest infinitary divisor of n that is a term of A366243.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Comments

First differs from A335324 at n = 256.

Crossrefs

See the formula section for the relationships with A008833, A046100, A059895, A059896, A059897, A225546, A248101, A352780.

Programs

  • Mathematica
    f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 1, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = -sum(k = 1, e, (-2)^k*floor(e/2^k));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}

Formula

Multiplicative with a(p^e) = p^A063695(e).
a(n) = n / A366244(n).
a(n) >= 1, with equality if and only if n is a term of A366242.
a(n) <= n, with equality if and only if n is a term of A366243.
From Peter Munn, Jan 09 2025: (Start)
a(n) = max({k in A366243 : A059895(k, n) = k}).
a(n) = Product_{k >= 0} A352780(n, 2k+1).
Also defined by:
- for n in A046100, a(n) = A008833(n);
- a(n^4) = (a(n))^4;
- a(A059896(n,k)) = A059896(a(n), a(k)).
Other identities:
a(n) = sqrt(A366244(n^2)).
a(A059897(n,k)) = A059897(a(n), a(k)).
a(A225546(n)) = A225546(A248101(n)).
(End)

A366247 The number of infinitary divisors of n that are "Fermi-Dirac primes" (A050376) and terms of A366243.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Comments

First differs from A101436 at n = 32.

Crossrefs

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[Mod[n, 4] > 1, 1, 0]; f[p_, e_] := s[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = if(e>3, s(e\4)) + e%4\2 \\ after Charles R Greathouse IV at A139352
    a(n) = vecsum(apply(s, factor(n)[, 2]));

Formula

Additive with a(p^e) = A139352(e).
a(n) = A064547(n) - A366246(n).
a(n) = A064547(A366245(n)).
a(n) >= 0, with equality if and only if n is in A366242.
a(n) <= A064547(n), with equality if and only if n is in A366243.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} f(1/p) = 0.39310573826635831710..., where f(x) = Sum_{k>=0} (x^(2*4^k)/(1+x^(2*4^k))).

A366309 The number of infinitary divisors of n that are terms of A366243.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[Mod[n, 4] > 1, 1, 0]; f[p_, e_] := 2^s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = if(e > 3, s(e\4)) + e%4\2 \\ after Charles R Greathouse IV at A139352
    a(n) = vecprod(apply(x -> 2^s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 2^A139352(e).
a(n) = 2^A366247(n).
a(n) = A037445(n)/A366308(n).
a(n) = A037445(A366245(n)).
a(n) >= 1, with equality if and only if n is in A366242.
a(n) <= A037445(n), with equality if and only if n is in A366243.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 - 1/p)*(1 + Sum_{k>=1} 2^A139352(k)/p^k) = 1.44736831993091923328... .

A370650 Numbers whose number of infinitary divisors that are terms of A366242 is equal to the number of infinitary divisors that are terms of A366243.

Original entry on oeis.org

1, 8, 12, 18, 20, 27, 28, 44, 45, 50, 52, 63, 64, 68, 75, 76, 92, 98, 99, 116, 117, 124, 125, 144, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 216, 236, 242, 244, 245, 261, 268, 275, 279, 284, 292, 316, 324, 325, 332, 333, 338, 343, 356, 360, 363, 369, 387, 388, 400
Offset: 1

Views

Author

Amiram Eldar, Feb 24 2024

Keywords

Comments

Numbers k such that A366308(k) = A366309(k).
Numbers k such that A366246(k) = A366247(k) = A064547(k)/2.
If k is a term, then all the numbers with the same prime signature as k are terms. The least terms with each prime signature are listed in A370651.
p^A039004(k) is a term for all primes p and all k >= 1.

Crossrefs

Programs

  • Mathematica
    s1[0] = 0; s1[n_] := s1[n] = s1[Floor[n/4]] + If[OddQ[Mod[n, 4]], 1, 0]; f1[p_, e_] := s1[e]; a1[1] = 0; a1[n_] := Plus  @@ f1 @@@ FactorInteger[n];
    s2[0] = 0; s2[n_] := s2[n] = s2[Floor[n/4]] + If[Mod[n, 4] > 1, 1, 0]; f2[p_, e_] := s2[e]; a2[1] = 0; a2[n_] := Plus @@ f2 @@@ FactorInteger[n];
    q[n_] := a1[n] == a2[n]; Select[Range[400], q]

A366242 Numbers that are products of "Fermi-Dirac primes" (A050376) that are powers of primes with exponents that are powers of 4.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Comments

A subsequence of A252895, and first differs from it at n = 172. A252895(172) = 256 = 2^(2^3) is not a term of this sequence.
Equivalently, numbers that are products of "Fermi-Dirac primes" that are powers of primes with exponents that are powers of 2 with even exponents.
Products of distinct numbers of the form p^(2^(2*k)), where p is prime and k >= 0.
Numbers whose prime factorization has exponents that are positive terms of the Moser-de Bruijn sequence (A000695).
Every integer k has a unique representation as a product of 2 numbers: one is in this sequence and the other is in A366243: k = A366244(k) * A366245(k).
The asymptotic density of this sequence is 1/c = 0.65531174251481086750..., where c is given in the formula section.

Crossrefs

Subsequence of A252895.

Programs

  • Mathematica
    mdQ[n_] := AllTrue[IntegerDigits[n, 4], # < 2 &]; Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], mdQ] &]
  • PARI
    ismd(n) = {my(d = digits(n, 4)); for(i = 1, #d, if(d[i] > 1, return(0))); 1;}
    is(n) = {my(e = factor(n)[ ,2]); for(i = 1, #e, if(!ismd(e[i]), return(0))); 1;}

Formula

a(n) ~ c * n, where c = Product_{k>=0} zeta(2^(2*k+1))/zeta(2^(2*k+2)) = 1.52599127273749217982... .

A352780 Square array A(n,k), n >= 1, k >= 0, read by descending antidiagonals, such that the row product is n and column k contains only (2^k)-th powers of squarefree numbers.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Apr 02 2022

Keywords

Comments

This is well-defined because positive integers have a unique factorization into powers of nonunit squarefree numbers with distinct exponents that are powers of 2.
Each (infinite) row is the lexicographically earliest with product n and terms that are a (2^k)-th power for all k.
For all k, column k is column k+1 of A060176 conjugated by A225546.

Examples

			The top left corner of the array:
  n/k |   0   1   2   3   4   5   6
------+------------------------------
    1 |   1,  1,  1,  1,  1,  1,  1,
    2 |   2,  1,  1,  1,  1,  1,  1,
    3 |   3,  1,  1,  1,  1,  1,  1,
    4 |   1,  4,  1,  1,  1,  1,  1,
    5 |   5,  1,  1,  1,  1,  1,  1,
    6 |   6,  1,  1,  1,  1,  1,  1,
    7 |   7,  1,  1,  1,  1,  1,  1,
    8 |   2,  4,  1,  1,  1,  1,  1,
    9 |   1,  9,  1,  1,  1,  1,  1,
   10 |  10,  1,  1,  1,  1,  1,  1,
   11 |  11,  1,  1,  1,  1,  1,  1,
   12 |   3,  4,  1,  1,  1,  1,  1,
   13 |  13,  1,  1,  1,  1,  1,  1,
   14 |  14,  1,  1,  1,  1,  1,  1,
   15 |  15,  1,  1,  1,  1,  1,  1,
   16 |   1,  1, 16,  1,  1,  1,  1,
   17 |  17,  1,  1,  1,  1,  1,  1,
   18 |   2,  9,  1,  1,  1,  1,  1,
   19 |  19,  1,  1,  1,  1,  1,  1,
   20 |   5,  4,  1,  1,  1,  1,  1,
		

Crossrefs

Sequences used in a formula defining this sequence: A000188, A007913, A060176, A225546.
Cf. A007913 (column 0), A335324 (column 1).
Range of values: {1} U A340682 (whole table), A005117 (column 0), A062503 (column 1), {1} U A113849 (column 2).
Row numbers of rows:
- with a 1 in column 0: A000290\{0};
- with a 1 in column 1: A252895;
- with a 1 in column 0, but not in column 1: A030140;
- where every 1 is followed by another 1: A337533;
- with 1's in all even columns: A366243;
- with 1's in all odd columns: A366242;
- where every term has an even number of distinct prime factors: A268390;
- where every term is a power of a prime: A268375;
- where the terms are pairwise coprime: A138302;
- where the last nonunit term is coprime to the earlier terms: A369938;
- where the last nonunit term is a power of 2: A335738.
Number of nonunit terms in row n is A331591(n); their positions are given (in reversed binary) by A267116(n); the first nonunit is in column A352080(n)-1 and the infinite run of 1's starts in column A299090(n).

Programs

  • PARI
    up_to = 105;
    A352780sq(n, k) = if(k==0, core(n), A352780sq(core(n, 1)[2], k-1)^2);
    A352780list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, forstep(col=a-1,0,-1, i++; if(i > up_to, return(v)); v[i] = A352780sq(a-col,col))); (v); };
    v352780 = A352780list(up_to);
    A352780(n) = v352780[n];

Formula

A(n,0) = A007913(n); for k > 0, A(n,k) = A(A000188(n), k-1)^2.
A(n,k) = A225546(A060176(A225546(n), k+1)).
A331591(A(n,k)) <= 1.

A366244 The largest infinitary divisor of n that is a term of A366242.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 16, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 32, 33, 34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 48, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61, 62, 7, 16, 65, 66, 67, 17, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Crossrefs

See the formula section for the relationships with A007913, A046100, A059895, A059896, A059897, A225546, A247503, A352780.

Programs

  • Mathematica
    f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 0, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = sum(k = 0, e, (-2)^k*floor(e/2^k));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}

Formula

Multiplicative with a(p^e) = p^A063694(e).
a(n) = n / A366245(n).
a(n) >= 1, with equality if and only if n is a term of A366243.
a(n) <= n, with equality if and only if n is a term of A366242.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1-1/p)*(Sum_{k>=1} p^(A063694(k)-2*k)) = 0.35319488024808595542... .
From Peter Munn, Jan 09 2025: (Start)
a(n) = max({k in A366242 : A059895(k, n) = k}).
a(n) = Product_{k >= 0} A352780(n, 2k).
Also defined by:
- for n in A046100, a(n) = A007913(n);
- a(n^4) = (a(n))^4;
- a(A059896(n,k)) = A059896(a(n), a(k)).
Other identities:
a(n) = sqrt(A366245(n^2)).
a(A059897(n,k)) = A059897(a(n), a(k)).
a(A225546(n)) = A225546(A247503(n)).
(End)

A366246 The number of infinitary divisors of n that are "Fermi-Dirac primes" (A050376) and terms of A366242.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 2, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[OddQ[Mod[n, 4]], 1, 0]; f[p_, e_] := s[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = if(e>3, s(e\4)) + e%2 \\ after Charles R Greathouse IV at A139351
    a(n) = vecsum(apply(s, factor(n)[, 2]));

Formula

Additive with a(p^e) = A139351(e).
a(n) = A064547(n) - A366247(n).
a(n) = A064547(A366244(n)).
a(n) >= 0, with equality if and only if n is in A366243.
a(n) <= A064547(n), with equality if and only if n is in A366242.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = -0.25705126777012995187..., where f(x) = - x + Sum_{k>=0} (x^(4^k)/(1+x^(4^k))).

A366308 The number of infinitary divisors of n that are terms of A366242.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 1, 4, 2, 2, 2, 8, 2, 4, 4, 4, 4, 1, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 4, 1, 2, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 2, 2, 4, 8, 2, 2, 4, 8, 2, 2, 2, 4, 2, 2, 4, 8, 2, 4, 2, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[OddQ[Mod[n, 4]], 1, 0]; f[p_, e_] := 2^s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = if(e > 3, s(e\4)) + e%2 \\ after Charles R Greathouse IV at A139351
    a(n) = vecprod(apply(x -> 2^s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 2^A139351(e).
a(n) = 2^A366246(n).
a(n) = A037445(n)/A366309(n).
a(n) = A037445(A366244(n)).
a(n) >= 1, with equality if and only if n is in A366243.
a(n) <= A037445(n), with equality if and only if n is in A366242.
Showing 1-9 of 9 results.