A366242 Numbers that are products of "Fermi-Dirac primes" (A050376) that are powers of primes with exponents that are powers of 4.
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 96, 97
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
mdQ[n_] := AllTrue[IntegerDigits[n, 4], # < 2 &]; Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], mdQ] &]
-
PARI
ismd(n) = {my(d = digits(n, 4)); for(i = 1, #d, if(d[i] > 1, return(0))); 1;} is(n) = {my(e = factor(n)[ ,2]); for(i = 1, #e, if(!ismd(e[i]), return(0))); 1;}
Formula
a(n) ~ c * n, where c = Product_{k>=0} zeta(2^(2*k+1))/zeta(2^(2*k+2)) = 1.52599127273749217982... .
Comments