cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366244 The largest infinitary divisor of n that is a term of A366242.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 16, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 32, 33, 34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 48, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61, 62, 7, 16, 65, 66, 67, 17, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Crossrefs

See the formula section for the relationships with A007913, A046100, A059895, A059896, A059897, A225546, A247503, A352780.

Programs

  • Mathematica
    f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 0, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = sum(k = 0, e, (-2)^k*floor(e/2^k));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}

Formula

Multiplicative with a(p^e) = p^A063694(e).
a(n) = n / A366245(n).
a(n) >= 1, with equality if and only if n is a term of A366243.
a(n) <= n, with equality if and only if n is a term of A366242.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1-1/p)*(Sum_{k>=1} p^(A063694(k)-2*k)) = 0.35319488024808595542... .
From Peter Munn, Jan 09 2025: (Start)
a(n) = max({k in A366242 : A059895(k, n) = k}).
a(n) = Product_{k >= 0} A352780(n, 2k).
Also defined by:
- for n in A046100, a(n) = A007913(n);
- a(n^4) = (a(n))^4;
- a(A059896(n,k)) = A059896(a(n), a(k)).
Other identities:
a(n) = sqrt(A366245(n^2)).
a(A059897(n,k)) = A059897(a(n), a(k)).
a(A225546(n)) = A225546(A247503(n)).
(End)