A366262 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366261(i) = A366261(j) for all i, j >= 0.
1, 2, 3, 2, 3, 2, 4, 5, 6, 2, 4, 7, 4, 5, 3, 7, 8, 2, 4, 7, 4, 7, 4, 9, 8, 10, 3, 7, 11, 7, 6, 5, 6, 2, 4, 7, 4, 7, 4, 9, 8, 12, 4, 9, 13, 9, 8, 7, 13, 12, 3, 7, 11, 7, 11, 7, 13, 14, 15, 5, 8, 14, 8, 10, 15, 2, 4, 7, 4, 7, 4, 9, 8, 12, 4, 9, 13, 9, 8, 7, 13, 16, 4, 9, 13, 9, 13, 9, 17, 16, 18, 7, 13, 19, 13, 12, 8, 10
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; A209229(n) = (n && !bitand(n,n-1)); A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); }; A303767(n) = if(!n,n,if(A209229(n),n+A303767(n-1),A053644(n)+A303767(n-A053644(n)-1))); A366260(n) = A005940(1+A303767(n)); A366261(n) = A046523(A366260(n)); v366262 = rgs_transform(vector(1+up_to,n,A366261(n-1))); A366262(n) = v366262[1+n];
Comments