cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A057889 Bijective bit-reverse of n: keep the trailing zeros in the binary expansion of n fixed, but reverse all the digits up to that point.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 12, 11, 14, 15, 16, 17, 18, 25, 20, 21, 26, 29, 24, 19, 22, 27, 28, 23, 30, 31, 32, 33, 34, 49, 36, 41, 50, 57, 40, 37, 42, 53, 52, 45, 58, 61, 48, 35, 38, 51, 44, 43, 54, 59, 56, 39, 46, 55, 60, 47, 62, 63, 64, 65, 66, 97, 68, 81, 98, 113
Offset: 0

Views

Author

Marc LeBrun, Sep 25 2000

Keywords

Comments

The original name was "Bit-reverse of n, including as many leading as trailing zeros." - Antti Karttunen, Dec 25 2024
A permutation of integers consisting only of fixed points and pairs. a(n)=n when n is a binary palindrome (including as many leading as trailing zeros), otherwise a(n)=A003010(n) (i.e. n has no axis of symmetry). A057890 gives the palindromes (fixed points, akin to A006995) while A057891 gives the "antidromes" (pairs). See also A280505.
This is multiplicative in domain GF(2)[X], i.e. with carryless binary arithmetic. A193231 is another such permutation of natural numbers. - Antti Karttunen, Dec 25 2024

Examples

			a(6)=6 because 0110 is a palindrome, but a(11)=13 because 1011 reverses into 1101.
		

Crossrefs

Cf. A030101, A000265, A006519, A006995, A057890, A057891, A280505, A280508, A331166 [= min(n,a(n))], A366378 [k for which a(k) = k (mod 3)], A369044 [= A014963(a(n))].
Similar permutations for other bases: A263273 (base-3), A264994 (base-4), A264995 (base-5), A264979 (base-9).
Other related (binary) permutations: A056539, A193231.
Compositions of this permutation with other binary (or other base-related) permutations: A264965, A264966, A265329, A265369, A379471, A379472.
Compositions with permutations involving prime factorization: A245450, A245453, A266402, A266404, A293448, A366275, A366276.
Other derived permutations: A246200 [= a(3*n)/3], A266351, A302027, A302028, A345201, A356331, A356332, A356759, A366389.
See also A235027 (which is not a permutation).

Programs

  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[n, 2]], 2]*2^IntegerExponent[n, 2], {n, 71}] (* Ivan Neretin, Jul 09 2015 *)
  • PARI
    A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
    A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2))); \\ Antti Karttunen, Dec 25 2024
  • Python
    def a(n):
        x = bin(n)[2:]
        y = x[::-1]
        return int(str(int(y))+(len(x) - len(str(int(y))))*'0', 2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 11 2017
    
  • Python
    def A057889(n): return int(bin(n>>(m:=(~n&n-1).bit_length()))[-1:1:-1],2)<Chai Wah Wu, Dec 25 2024
    

Formula

a(n) = A030101(A000265(n)) * A006519(n), with a(0)=0.

Extensions

Clarified the name with May 30 2016 comment from N. J. A. Sloane, and moved the old name to the comments - Antti Karttunen, Dec 25 2024

A366275 The Cat's tongue permutation: a(n) = A163511(A057889(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 6, 5, 16, 27, 18, 15, 12, 25, 10, 7, 32, 81, 54, 45, 36, 75, 30, 21, 24, 125, 50, 35, 20, 49, 14, 11, 64, 243, 162, 135, 108, 225, 90, 63, 72, 375, 150, 105, 60, 147, 42, 33, 48, 625, 250, 175, 100, 245, 70, 55, 40, 343, 98, 77, 28, 121, 22, 13, 128, 729, 486, 405, 324, 675, 270, 189, 216, 1125
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Comments

"Cat's tongue" refers to the look of the scatter plot of this sequence.

Crossrefs

Cf. A000040, A000225, A007814, A057889, A163511, A209229, A290251, A366276 (inverse map), A366277 (fixed points of map n -> a(n)), A366278, A366279, A366280, A366281 [= A052409(a(n))], A366282 [= a(n)-n], A366283 [= gcd(n,a(n))].
Cf. also A163511, A253563, A366263 (compare the scatter plots).

Programs

  • PARI
    A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
    A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2)));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A366275(n) = A163511(A057889(n));
    
  • Python
    from sympy import prime
    def A366275(n):
        if n:
            k, c, m = int(bin(n>>(r:=(~n & n-1).bit_length()))[:1:-1],2)<>= s+1
            return m*prime(c)
        return 1 # Chai Wah Wu, Oct 08 2023

Formula

For n >= 0, A001222(a(n)) = A290251(n).
For n >= 1, A007814(a(n)) = A135523(n) = A007814(n) + A209229(n). [Like A163511, also this permutation preserves the 2-adic valuation of n, except when n is a power of two, in which cases that value is incremented by one.]
For n >= 1, a(2*n) = 2*a(n).
For n >= 1, a(A000225(n)) = A000040(n).

A366277 Fixed points of map n -> A366275(n).

Original entry on oeis.org

3, 6, 12, 24, 48, 55, 96, 110, 192, 220, 384, 440, 768, 880, 1536, 1760, 3072, 3520, 6144, 7040, 12288, 14080, 24576, 28160, 49152, 56320, 98304, 112640, 196608, 225280, 393216, 450560, 786432, 901120, 1572864, 1802240, 3145728, 3604480, 6291456, 7208960, 12582912, 14417920, 25165824, 28835840, 50331648, 57671680
Offset: 1

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Comments

Equally, fixed points of map n -> A366276(n).
If n is a term, then 2*n is also a term, and vice versa, thus the sequence is wholly determined by its odd terms: 3, 55. Are there any others?

Crossrefs

Cf. A007283 (subsequence), A057889, A163511, A366275, A366276.

Programs

Showing 1-3 of 3 results.