cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366293 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365711(i) = A365711(j) for all i, j >= 1, where A365711 is the Dirichlet inverse of balanced ternary enumeration of integers (A117966).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 8, 9, 10, 11, 11, 12, 5, 13, 5, 14, 15, 16, 8, 17, 9, 5, 18, 19, 20, 21, 22, 23, 24, 21, 5, 25, 26, 27, 28, 29, 30, 31, 32, 5, 12, 33, 34, 34, 28, 17, 35, 6, 5, 36, 37, 38, 39, 40, 5, 41, 21, 5, 42, 43, 44, 45, 46, 47, 48, 49, 5, 50, 25, 51, 52, 4, 27, 53, 5, 5, 54, 55, 56, 57, 58, 59, 60, 61, 5
Offset: 1

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Comments

Restricted growth sequence transform of A365711.
For all i, j: a(i) = a(j) => A365428(i) = A365428(j) => A359377(i) = A359377(j).

Crossrefs

Programs

  • PARI
    up_to = 3^10;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA117966(n) = subst(Pol(apply(x->if(x == 2, -1, x), digits(n, 3)), 'x), 'x, 3); \\ From A117966
    v366293 = rgs_transform(DirInverseCorrect(vector(up_to,n,A117966(n))));
    A366293(n) = v366293[n];