A366296 Lexicographically earliest infinite sequence such that a(i) = a(j) => A346242(i) = A346242(j) for all i, j >= 1, where A346242 is Dirichlet inverse of gcd(n, A276086(n)).
1, 2, 3, 4, 2, 5, 2, 4, 6, 3, 2, 7, 2, 1, 8, 4, 2, 9, 2, 10, 11, 1, 2, 4, 12, 1, 13, 4, 2, 14, 2, 4, 11, 1, 15, 16, 2, 1, 11, 4, 2, 17, 2, 4, 18, 1, 2, 4, 19, 20, 11, 4, 2, 21, 3, 19, 11, 1, 2, 22, 2, 1, 12, 4, 1, 15, 2, 4, 11, 23, 2, 24, 2, 1, 25, 4, 15, 15, 2, 4, 26, 1, 2, 27, 3, 1, 11, 4, 2, 28, 15, 4, 11, 1, 1, 4
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d
A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p, valuation(orgn, p))); n = n\p; p = nextprime(1+p)); (m); }; v366296 = rgs_transform(DirInverseCorrect(vector(up_to,n,A324198(n)))); A366296(n) = v366296[n];
Comments