cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366309 The number of infinitary divisors of n that are terms of A366243.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[Mod[n, 4] > 1, 1, 0]; f[p_, e_] := 2^s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = if(e > 3, s(e\4)) + e%4\2 \\ after Charles R Greathouse IV at A139352
    a(n) = vecprod(apply(x -> 2^s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 2^A139352(e).
a(n) = 2^A366247(n).
a(n) = A037445(n)/A366308(n).
a(n) = A037445(A366245(n)).
a(n) >= 1, with equality if and only if n is in A366242.
a(n) <= A037445(n), with equality if and only if n is in A366243.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 - 1/p)*(1 + Sum_{k>=1} 2^A139352(k)/p^k) = 1.44736831993091923328... .