A366376 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366375(i) = A366375(j) for all i, j >= 0, where A366375(n) is the denominator of n / A332214(n).
1, 2, 2, 1, 2, 3, 1, 1, 2, 4, 3, 5, 1, 6, 1, 1, 2, 7, 4, 8, 3, 9, 5, 10, 1, 11, 6, 12, 1, 13, 1, 1, 2, 7, 7, 8, 4, 14, 8, 15, 3, 16, 9, 17, 5, 18, 10, 19, 1, 20, 11, 21, 6, 22, 12, 23, 1, 13, 13, 24, 1, 25, 1, 26, 2, 27, 7, 28, 7, 29, 8, 30, 4, 31, 14, 12, 8, 32, 15, 33, 3, 5, 16, 34, 9, 22, 17, 35, 5, 36, 18, 19, 10
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
Crossrefs
Programs
-
PARI
\\ Needs also program from A332214: up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A366375(n) = { my(u=A332214(n)); (u/gcd(n,u)); }; v366376 = rgs_transform(vector(1+up_to,n,A366375(n-1))); A366376(n) = v366376[1+n];
Comments