A366381 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336466(i) = A336466(j) and A336467(i) = A336467(j) for all i, j >= 1, where A336466 is fully multiplicative with a(p) = oddpart(p-1) for any prime p and A336467 is fully multiplicative with a(2) = 1 and a(p) = oddpart(p+1) for odd primes p.
1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 5, 3, 2, 1, 6, 1, 7, 2, 3, 4, 8, 1, 6, 5, 1, 3, 9, 2, 10, 1, 4, 6, 11, 1, 12, 7, 5, 2, 13, 3, 14, 4, 2, 8, 15, 1, 16, 6, 6, 5, 17, 1, 18, 3, 7, 9, 19, 2, 20, 10, 3, 1, 21, 4, 22, 6, 8, 11, 23, 1, 24, 12, 6, 7, 25, 5, 26, 2, 1, 13, 27, 3, 28, 14, 9, 4, 29, 2, 30, 8, 10, 15, 31, 1, 32
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A000265(n) = (n>>valuation(n,2)); A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); }; A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); }; A366381aux(n) = [A336466(n), A336467(n)]; v366381 = rgs_transform(vector(up_to,n,A366381aux(n))); A366381(n) = v366381[n];
Comments