A366382 Lexicographically earliest infinite sequence such that a(i) = a(j) => A349134(i) = A349134(j) for all i, j >= 1, where A349134 is Dirichlet inverse of Kimberling's paraphrases.
1, 2, 3, 4, 5, 6, 7, 4, 2, 8, 9, 4, 10, 11, 11, 4, 12, 1, 13, 4, 14, 15, 16, 4, 7, 17, 3, 4, 18, 7, 19, 4, 17, 20, 15, 4, 21, 22, 23, 4, 24, 25, 26, 4, 8, 27, 28, 4, 12, 11, 22, 4, 29, 6, 23, 4, 30, 31, 32, 4, 33, 34, 11, 4, 20, 10, 35, 4, 36, 9, 37, 4, 38, 39, 23, 4, 20, 40, 41, 4, 7, 42, 43, 4, 30, 44, 34, 4, 45, 5, 22
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d
A003602(n) = (1+(n>>valuation(n,2)))/2; v366382 = rgs_transform(DirInverseCorrect(vector(up_to,n,A003602(n)))); A366382(n) = v366382[n];