A366419 Number of distinct integers of the form (x^n + y^n) mod n^3.
1, 5, 15, 11, 65, 21, 133, 34, 135, 75, 561, 63, 949, 192, 975, 129, 1921, 165, 3097, 99, 525, 663, 6095, 231, 1625, 741, 1215, 576, 8149, 525, 12121, 513, 8415, 2091, 8645, 495, 21349, 3081, 2535, 363, 34481, 315, 32551, 1989, 8775, 5316, 51935, 903, 6517, 1875, 28815, 1062
Offset: 1
Keywords
Programs
-
PARI
a(n) = #setbinop((x, y)->Mod(x, n^3)^n+Mod(y, n^3)^n, [0..n^2-1]); \\ Michel Marcus, Oct 14 2023
-
Python
def A366419(n): m = n**3 return len({(pow(x,n,m)+pow(y,n,m))%m for x in range(n**2) for y in range(x+1)}) # Chai Wah Wu, Nov 13 2023
Comments