cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366438 The number of divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 8, 4, 4, 2, 8, 2, 6, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 2, 4, 2, 8, 4, 8, 4, 4, 2, 2, 4, 4, 8, 2, 4, 8, 2, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 8, 2, 4, 4, 4, 4, 12, 2, 2, 8, 2, 8, 8, 4, 2, 2, 8, 4, 2, 8, 4, 4, 4, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Comments

1 is the only odd term in this sequence.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Times @@ (e + 1), Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(vecprod(apply(x -> x+1, e)), ", ")));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A366438_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e&1 for e in f):
                yield prod(e+1 for e in f)
    A366438_list = list(islice(A366438_gen(),30)) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000005(A268335(n)).