A366565 Decimal expansion of the smaller real solution to x*2^(1/x) = e.
3, 2, 7, 5, 6, 2, 4, 1, 3, 9, 7, 7, 5, 1, 6, 9, 4, 0, 0, 9, 2, 8, 2, 0, 8, 1, 2, 5, 9, 9, 1, 2, 2, 0, 4, 4, 3, 3, 9, 6, 4, 4, 6, 9, 6, 6, 5, 4, 2, 2, 7, 4, 2, 0, 4, 2, 9, 6, 9, 6, 9, 5, 4, 9, 6, 3, 4, 7, 6, 6, 3, 1, 4, 2, 2, 3, 3, 8, 7, 4, 9, 7, 5, 4, 6, 7, 9, 4, 2
Offset: 0
Examples
0.32756241397751694009282081259912204433964469665422742...
Links
- Persi Diaconis, R. L. Graham, and J. A. Morrison, Asymptotic Analysis of a Random Walk on a Hypercube with Many Dimensions, Technical Report EFS NFS 307, Department of Statistics, Stanford University, December 1988.
- Persi Diaconis, R. L. Graham, and J. A. Morrison, Asymptotic analysis of a random walk on a hypercube with many dimensions, Random Structures & Algorithms, Volume 1, Issue 1, Pages 51-72, Spring 1990.
- Gordon Slade, Self-avoiding walk on the hypercube, Random Structures & Algorithms, Volume 62, Issue 3, May 2023, Pages 689-736.
Programs
-
Mathematica
RealDigits[-Log[2]/ProductLog[-1, -Log[2]/E], 10, 120][[1]] (* Vaclav Kotesovec, Nov 03 2023 *)
-
PARI
solve (x = 0.3, 0.35, x*2^(1/x)-exp(1))
Formula
Equals -log(2)/LambertW(-1, -log(2)/exp(1)). - Vaclav Kotesovec, Nov 03 2023
Comments