cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A366595 G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)^3*A(x)^4.

Original entry on oeis.org

1, 0, 0, 0, 1, 3, 3, 1, 4, 24, 60, 80, 82, 222, 796, 1848, 2912, 4452, 11088, 31592, 70467, 125437, 231105, 551775, 1399069, 3068219, 5942937, 12017739, 27966515, 66675777, 145719483, 298344501, 632955999, 1449806573, 3346606719, 7335193353, 15557399668
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(3*k, n-4*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(3*k,n-4*k) * binomial(4*k,k)/(3*k+1).

A366557 G.f. A(x) satisfies A(x) = 1 + x + x^3*A(x)^4.

Original entry on oeis.org

1, 1, 0, 1, 4, 6, 8, 29, 84, 162, 360, 1074, 2808, 6444, 16464, 45629, 118244, 297450, 790184, 2138438, 5624136, 14778068, 39767024, 107287122, 286593800, 768920084, 2083170960, 5642886852, 15250029552, 41369986008, 112681853344, 306930498205, 836259756612
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(3*k+1, n-3*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(3*k+1,n-3*k) * binomial(4*k,k)/(3*k+1).
a(n) = A366594(n) + A366594(n-1).

A366593 G.f. A(x) satisfies A(x) = 1 + x^2*(1+x)^3*A(x)^4.

Original entry on oeis.org

1, 0, 1, 3, 7, 25, 82, 278, 992, 3552, 12985, 48107, 179977, 680079, 2589915, 9931573, 38319117, 148640195, 579349123, 2267818509, 8911575579, 35141656433, 139018921717, 551557089103, 2194155973751, 8750097458849, 34973989188202, 140085055366350
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(3*k, n-2*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*k,n-2*k) * binomial(4*k,k)/(3*k+1).
Showing 1-3 of 3 results.